Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Note On Parallel Matrix Inversion

Published: 01 January 2001 Publication History

Abstract

We present one-sweep parallel algorithms for the inversion of general and symmetric positive definite matrices. The algorithms feature simple programming and performance optimization while maintaining the same arithmetic cost and numerical properties of conventional inversion algorithms. Our experiments on a Cray T3E-600 and a Beowulf cluster demonstrate high performance of implementations for distributed memory parallel computers.

References

[1]
R. C. Agarwal, F. Gustavson, and M. Zubair, A high‐performance matrix multiplication algorithm on a distributed memory parallel computer using overlapped communication, IBM J. Research and Development, 38 (1994), pp. 673–682.
[2]
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, PA, 1995.
[3]
G. Baker, Implementation of parallel processing to selected problems in satellite geodesy, Ph.D. thesis, Department of Aerospace Engineering, The University of Texas, Austin, TX, 1997.
[4]
Kari Brusdal, Trond Mannseth, Basis norm rescaling for nonlinear parameter estimation, SIAM J. Sci. Comput., 21 (2000), 2114–2125
[5]
F. L. Bauer and C. Reinsch, Inversion of positive definite matrices by the Gauss‐Jordan method, in Linear Algebra, Handbook for Automatic Computation, Vol. II, J. H. Wilkinson and C. Reinsch, eds., Springer‐Verlag, Berlin, 1971, Contribution I/3, pp. 45–49.
[6]
L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, 1997.
[7]
T. Cwik, R. van de Geijn, and J. Patterson, The application of parallel computation to integral equation models of electromagnetic scattering, J. Opt. Soc. Amer. A, 11 (1994), pp. 1538–1545.
[8]
J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, PA, 1979.
[9]
J. D. Gardiner and A. J. Laub, A generalization of the matrix‐sign‐function solution for algebraic Riccati equations, Int. J. Control, 44 (1986), pp. 823–832.
[10]
A. V. Gerbessiotis, Algorithmic and Practical Considerations for Dense Matrix Computations on the BSP Model, Technical Report PRG‐TR‐32‐97, Oxford University Computing Laboratory, Oxford, UK, 1997.
[11]
J. Gunnels, C. Lin, G. Morrow, and R. van de Geijn, A flexible class of parallel matrix multiplication algorithms, in Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP ‘98), Orlando, FL, 1998, IEEE Computer Society, Los Alamitos, CA, 1998, pp. 110–116.
[12]
M. T. Heath, G. A. Geist, and J. B. Drake, Early Experience with the Intel iPSC/860 at ORNL, Technical Report ORNL/TM‐11655, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.
[13]
Nicholas Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), 1996xxviii+688
[14]
A. S. Householder, The Theory of Matrices in Numerical Analysis, Dover Publications, Blaisdell, NY, 1974.
[15]
J. H. Maindonald, Statistical Computation, Wiley, New York, 1984.
[16]
Jiayang Sun, Catherine Loader, William McCormick, Confidence bands in generalized linear models, Ann. Statist., 28 (2000), 429–460
[17]
J. Roberts, Linear model reduction and solution of algebraic Riccati equations by the use of the sign function, Int. J. Control, 32 (1980), pp. 677–687.
[18]
X. Sun, E. S. Quintana, G. Quintana, and R. van de Geijn, Efficient Matrix Inversion via Gauss‐Jordan Elimination and Its Parallelization, Technical Report CS‐98‐19, Department of Computer Sciences, The University of Texas, Austin, TX, 1998.
Available online at http://www.cs.utexas.edu/users/plapack/papers.
[19]
R. van de Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algorithm, Concurrency: Practice and Experience, 9 (1997), pp. 255–274.
[20]
R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Package, The MIT Press, Cambridge, MA, 1997.

Cited By

View all
  • (2023)SCALO: An Accelerator-Rich Distributed System for Scalable Brain-Computer InterfacingProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589107(1-20)Online publication date: 17-Jun-2023
  • (2022)Applying Dijkstra’s Vision to Numerical SoftwareEdsger Wybe Dijkstra10.1145/3544585.3544597(215-230)Online publication date: 12-Jul-2022
  • (2021)A New Generation of Task-Parallel Algorithms for Matrix Inversion in Many-Threaded CPUsProceedings of the 12th International Workshop on Programming Models and Applications for Multicores and Manycores10.1145/3448290.3448563(1-10)Online publication date: 22-Feb-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 22, Issue 5
2001
394 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2001

Author Tags

  1. 65F05
  2. 65Y05

Author Tags

  1. matrix inversion
  2. Gauss--Jordan elimination
  3. parallel computers

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)SCALO: An Accelerator-Rich Distributed System for Scalable Brain-Computer InterfacingProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589107(1-20)Online publication date: 17-Jun-2023
  • (2022)Applying Dijkstra’s Vision to Numerical SoftwareEdsger Wybe Dijkstra10.1145/3544585.3544597(215-230)Online publication date: 12-Jul-2022
  • (2021)A New Generation of Task-Parallel Algorithms for Matrix Inversion in Many-Threaded CPUsProceedings of the 12th International Workshop on Programming Models and Applications for Multicores and Manycores10.1145/3448290.3448563(1-10)Online publication date: 22-Feb-2021
  • (2020)Tensorized Multi-view Subspace Representation LearningInternational Journal of Computer Vision10.1007/s11263-020-01307-0128:8-9(2344-2361)Online publication date: 1-Sep-2020
  • (2020)Acceleration of Boltzmann Equation for Core-Collapse Supernova Simulations on PEZY-SC ProcessorsComputational Science and Its Applications – ICCSA 202010.1007/978-3-030-58814-4_13(177-192)Online publication date: 1-Jul-2020
  • (2019)randUTVACM Transactions on Mathematical Software10.1145/324267045:1(1-26)Online publication date: 14-Mar-2019
  • (2017)Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioner Generation on GPUsProceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores10.1145/3026937.3026940(1-10)Online publication date: 4-Feb-2017
  • (2017)Porting the PLASMA Numerical Library to the OpenMP StandardInternational Journal of Parallel Programming10.1007/s10766-016-0441-645:3(612-633)Online publication date: 1-Jun-2017
  • (2016)Energy-aware solution of linear systems with many right hand sidesComputer Science - Research and Development10.1007/s00450-016-0326-331:4(215-223)Online publication date: 1-Nov-2016
  • (2015)Hybrid Ikebe-Newton's iteration for inverting general nonsingular Hessenberg matricesApplied Mathematics and Computation10.1016/j.amc.2015.06.084268:C(413-421)Online publication date: 1-Oct-2015
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media