Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Approximating extent measures of points

Published: 01 July 2004 Publication History

Abstract

We present a general technique for approximating various descriptors of the extent of a set P of n points in Rd when the dimension d is an arbitrary fixed constant. For a given extent measure μ and a parameter ε > 0, it computes in time O(n + 1/εO(1)) a subset QP of size 1/εO(1), with the property that (1 − ε)μ(P) ≤ μ(Q) ≤ μ(P). The specific applications of our technique include ε-approximation algorithms for (i) computing diameter, width, and smallest bounding box, ball, and cylinder of P, (ii) maintaining all the previous measures for a set of moving points, and (iii) fitting spheres and cylinders through a point set P. Our algorithms are considerably simpler, and faster in many cases, than previously known algorithms.

References

[1]
Agarwal, P. K., Arge, L., and Erickson, J. 2003. Indexing moving points. J. Comput. Syst. Sci. 66, 207--243.
[2]
Agarwal, P. K., Aronov, B., Har-Peled, S., and Sharir, M. 2000. Approximation and exact algorithms for minimum-width annuli and shells. Disc. Comput. Geom. 24, 4, 687--705.
[3]
Agarwal, P. K., Aronov, B., and Sharir, M. 2001a. Exact and approximation algorithms for minimum-width cylindrical shells. Disc. Comput. Geom. 26, 3, 307--320.
[4]
Agarwal, P. K., Guibas, L. J., Hershberger, J., and Veach, E. 2001b. Maintaining the extent of a moving point set. Disc. Comput. Geom. 26, 3, 353--374.
[5]
Agarwal, P. K., and Matoušek, J. 1994. On range searching with semialgebraic sets. Disc. Comput. Geom. 11, 393--418.
[6]
Agarwal, P. K., and Matoušek, J. 2004. Discretizing the space of directions. in preparation.
[7]
Agarwal, P. K., Procopiuc, C. M., and Varadarajan, K. 2002. Approximation algorithms for k-line center. In Proceedings of the 10th Annual Symposium on European Algorithms. 54--63.
[8]
Agarwal, P. K., and Sharir, M. 1998. Efficient algorithms for geometric optimization. ACM Comput. Surv. 30, 412--458.
[9]
Agarwal, P. K., and Sharir, M. 2000. Arrangements and their applications. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds. Elsevier Science Publishers B.V. North-Holland, Amsterdam, The Netherlands, 49--119.
[10]
Barequet, G., and Har-Peled, S. 2001. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38, 91--109.
[11]
Basch, J., Guibas, L. J., and Hershberger, J. 1999. Data structures for mobile data. J. Algorithms 31, 1, 1--28.
[12]
Bentley, J. L., and Saxe, J. B. 1980. Decomposable searching problems I: Static-to-dynamic transformation. J. Algorithms 1, 301--358.
[13]
Bronshteyn, E. M., and Ivanov, L. D. 1976. The approximation of convex sets by polyhedra. Siberian Math. J. 16, 852--853.
[14]
Bădoiu, M., and Clarkson, K. 2003. Smaller core-sets for balls. In Proceedings of the 14th Annual ACM--SIAM Symposium on Discrete Algorithms. 801--802.
[15]
Bădoiu, M., Har-Peled, S., and Indyk, P. 2002. Approximate clustering via core-sets. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing. 250--257.
[16]
Chan, T. M. 2002. Approximating the diameter, width, smallest enclosing cylinder and minimum-width annulus. Int. J. Comput. Geom. Appl. 12, 2, 67--85.
[17]
Chazelle, B., and Matoušek, J. 1996. On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21, 579--597.
[18]
Chen, Y., Dong, G., Han, J., Wah, B. W., and Wang, J. 2002. Multi-dimensional regression analysis of time-series data streams. In Proceedings of the 28th International Conference on Very Large Data Bases. 323--334.
[19]
Dudley, R. M. 1974. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory 10, 3, 227--236.
[20]
Duncan, C. A., Goodrich, M. T., and Ramos, E. A. 1997. Efficient approximation and optimization algorithms for computational metrology. In Proceedings of the 8th ACM--SIAM Symposium on Discrete Algorithms. ACM, New York, 121--130.
[21]
Gärtner, B. 1995. A subexponential algorithm for abstract optimization problems. SIAM J. Comput. 24, 1018--1035.
[22]
Gritzmann, P., and Klee, V. 1992. Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Disc. Comput. Geom. 7, 255--280.
[23]
Guha, S., Koudas, N., and Shim, K. 2001. Data-streams and histograms. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. ACM, New York, 471--475.
[24]
Guha, S., Mishra, N., Motwani, R., and O'Callaghan, L. 2000. Clustering data streams. In Proceedings of the 41th Annual IEEE Symposium on Foundation of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., 359--366.
[25]
Har-Peled, S., and Wang, Y. 2003. Shape fitting with outliers. In Proceedings of the 19th Annual ACM Symposium on Computer Geometry. ACM, New York, 29--38.
[26]
Korn, F., Muthukrishnan, S., and Srivastava, D. 2002. Reverse nearest neighbour aggregates over data streams. In Proceedings of the 28th International Conference on Very Large Data Bases. 814--825.
[27]
Kumar, P., Mitchell, J., and Yildirim, E. 2003. Computing core-sets and approximate smallest enclosing hyperspheres in high dimensions. In Proc. 5th Workshop on Algorithm Engineering and Experiments 45--55.
[28]
Kumar, P., and Yildirim, E. 2003. Approximating minimum volume enclosing ellipsoids using core sets. Unpublished manuscript.
[29]
Munro, J. I., and Paterson, M. S. 1980. Selection and sorting with limited storage. Theoret. Comput. Sci. 12, 315--323.
[30]
O'Rourke, J. 1985. Finding minimal enclosing boxes. Int. J. Comput. Inf. Sci. 14, 183--199.
[31]
Procopiuc, C. M., Agarwal, P. K., and Har-Peled, S. 2002. STAR-Tree: An efficient self-adjusting index for moving objects. In Proc. 4th Workshop on Algorithm Engineering and Experiments, D. M. Mount and C. Stein, Eds. Lecture Notes in Computer Science, vol. 2409. Springer-Verlag, New York, 178--193.
[32]
Saltenis, S., Jensen, C. S., Leutenegger, S., and Lopez, M. 2000. Indexing the positions of continuously moving objects. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, New York, 331--342.
[33]
Yao, A. C., and Yao, F. F. 1985. A general approach to D-dimensional geometric queries. In Proceedings of the 17th Annual ACM Symposium on Theory Computing. ACM, New York, 163--168.
[34]
Zhou, Y., and Suri, S. 2002. Algorithms for a minimum volume enclosing simplex in three dimensions. SIAM J. Comput. 31, 5, 1339--1357.

Cited By

View all
  • (2024)CORESET DISCOVERY FOR MACHINE LEARNING PROBLEMSKIBERNETYKA TA SYSTEMNYI ANALIZ10.34229/KCA2522-9664.24.2.4(38-50)Online publication date: 2024
  • (2024)Advantages and Pitfalls of Dataset Condensation: An Approach to Keyword Spotting with Time-Frequency RepresentationsElectronics10.3390/electronics1311209713:11(2097)Online publication date: 28-May-2024
  • (2024)Competitive Data-Structure DynamizationACM Transactions on Algorithms10.1145/367261420:4(1-28)Online publication date: 28-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 51, Issue 4
July 2004
181 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/1008731
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2004
Published in JACM Volume 51, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Computational geometry
  2. approximation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)76
  • Downloads (Last 6 weeks)11
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)CORESET DISCOVERY FOR MACHINE LEARNING PROBLEMSKIBERNETYKA TA SYSTEMNYI ANALIZ10.34229/KCA2522-9664.24.2.4(38-50)Online publication date: 2024
  • (2024)Advantages and Pitfalls of Dataset Condensation: An Approach to Keyword Spotting with Time-Frequency RepresentationsElectronics10.3390/electronics1311209713:11(2097)Online publication date: 28-May-2024
  • (2024)Competitive Data-Structure DynamizationACM Transactions on Algorithms10.1145/367261420:4(1-28)Online publication date: 28-Jun-2024
  • (2024)Coresets for fast causal discovery with the additive noise modelPattern Recognition10.1016/j.patcog.2023.110149148:COnline publication date: 17-Apr-2024
  • (2024)On coresets for fair clustering in metric and Euclidean spaces and their applicationsJournal of Computer and System Sciences10.1016/j.jcss.2024.103506142:COnline publication date: 1-Jun-2024
  • (2024)Coreset Discovery for Machine Learning ProblemsCybernetics and Systems Analysis10.1007/s10559-024-00661-y60:2(198-208)Online publication date: 1-Mar-2024
  • (2024)Computing Instance-Optimal Kernels in Two DimensionsDiscrete & Computational Geometry10.1007/s00454-024-00637-xOnline publication date: 7-Apr-2024
  • (2024)Towards Model-Agnostic Dataset Condensation by Heterogeneous ModelsComputer Vision – ECCV 202410.1007/978-3-031-73397-0_14(234-250)Online publication date: 3-Nov-2024
  • (2024)Minimum-Width Double-Slabs and Widest Empty Slabs in High DimensionsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_20(303-317)Online publication date: 18-Mar-2024
  • (2024)Compression Image Dataset Based on Multiple Matrix Product StatesAdvances in Information and Communication10.1007/978-3-031-53963-3_43(621-638)Online publication date: 17-Mar-2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media