Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Porous flow in particle-based fluid simulations

Published: 01 August 2008 Publication History

Abstract

This paper presents the simulation of a fluid flowing through a porous deformable material. We introduce the physical principles governing porous flow, expressed by the Law of Darcy, into the Smoothed Particle Hydrodynamics (SPH) framework for simulating fluids and deformable objects. Contrary to previous SPH approaches, we simulate porous flow at a macroscopic scale, making abstraction of individual pores or cavities inside the material. Thus, the number of computational elements is kept low, while at the same time realistic simulations can be achieved. Our algorithm models the changing behavior of the wet material as well as the full two-way coupling between the fluid and the porous material. This enables various new effects, such as the simulation of sponge-like elastic bodies and water-absorbing sticky cloth.

Supplementary Material

MOV File (a49-lenaerts.mov)

References

[1]
Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, 48.
[2]
Bear, J. 1972. Dynamics of Fluids in Porous Media. Dover Publications.
[3]
Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 209--217.
[4]
Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 77--86.
[5]
Berry, R. A., Martineau, R. C., and Wood, T. R. 2004. Particle-based direct numerical simulation of contaminant transport and deposition in porous flow. Vadose Zone Journal 3, 1 (February), 164--169.
[6]
Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377--384.
[7]
Chu, N. S.-H., and Tai, C.-L. 2005. Moxi: real-time ink dispersion in absorbent paper. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY, USA, 504--511.
[8]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 219--228.
[9]
Cuesta, C., van Duijn, C., and Hulshof, J. 1999. Infiltration in porous media with dynamic capillary pressure: travelling waves. Tech. Rep. MAS-R9932, CWI, Nov.
[10]
Darcy, H. 1856. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.
[11]
Desbrun, M., and Cani, M.-P. 1999. Space-time adaptive simulation of highly deformable substances. Tech. Rep. 3829, INRIA, BP 105 - 78153 Le Chesnay Cedex - France, December.
[12]
Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation '96, 61--76.
[13]
Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 23--30.
[14]
Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483.
[15]
Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In CGI '97: Proceedings of the 1997 Conference on Computer Graphics International, IEEE Computer Society, Washington, DC, USA, 178.
[16]
Gingold, R. A., and Monaghan, J. J. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. astr. Soc. 181, 375--389.
[17]
Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY, USA, 973--981.
[18]
Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007. Smoothed particle hydrodynamics on GPUs. In Computer Graphics International, 63--70.
[19]
Hegeman, K., Carr, N. A., and Miller, G. S. 2006. Particle-based fluid simulation on the GPU. In Computational Science --- ICCS 2006, Springer, P. M. S. Vassil N. Alexandrov, Geert Dick van Albada and J. Dongarra, Eds., vol. 3994 of LNCS, 228--235.
[20]
Hilfer, R. 1996. Transport and relaxation phenomena in porous media. Advances in Chemical Physics XCII, 299.
[21]
Hilfer, R. 2006. Macroscopic capillarity and hysteresis for flow in porous media. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73, 1, 016307.
[22]
Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques, Proceedings of the Eurographics Workshop on Rendering, 273--282.
[23]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics, 125--133.
[24]
Keiser, R., Adams, B., Dutré, P., Guibas, L. J., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. rep., ETH Zurich.
[25]
Kipfer, P., and Westermann, R. 2006. Realistic and interactive simulation of rivers. In Proceedings Graphics Interface 2006, Canadian Human-Computer Communications Society, S. Mann and C. Gutwin, Eds., 41--48.
[26]
Kolb, A., and Cuntz, N. 2005. Dynamic particle coupling for GPU-based fluid simulation. In Proc. 18th Symposium on Simulation Technique, 722--727.
[27]
Lekner, J., and Dorf, M. C. 1988. Why some things are darker when wet. Applied Optics 27, 7, 1278--1280.
[28]
Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH 87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 163--169.
[29]
Lucy, L. B. 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82 (Dec.), 1013--1024.
[30]
Monaghan, J. 1992. Smoothed particle hydrodynamics. Annual Revision on Astronomy and Astrophysics 30, 543--574.
[31]
Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8 (August), 1703--1759.
[32]
Morris, J. P., Fox, P. J., and Zhu, Y. 1997. Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 1, 214--226.
[33]
Morris, J. P., Zhu, Y., and Fox, P. J. 1999. Parallel simulations of pore-scale flow through porous media. Computers and Geotechnics 25, 4, 227--246.
[34]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Airela-Ville, Switzerland, Switzerland, 154--159.
[35]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. Proceedings of 2004 ACM SIGGRAPH Symposium on Computer Animation, 141--151.
[36]
Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. H. 2004. Interaction of fluids with deformable solids. Journal of Visualization and Computer Animation 15, 3--4, 159--171.
[37]
Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 237--244.
[38]
Nitao, J. J., and Bear, J. 1996. Potentials and their role in transport in porous media. Water Resources Research 32, 225--250.
[39]
Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Eurographics 2003 / Computer Graphics Forum 22, 3, 401--410.
[40]
Sawley, M., Cleary, P., and Ha, J. 1999. Modelling of flow in porous media and resin transfer moulding using smoothed particle hydrodynamics. In Second International Conference on CFD in the Minerals and Process Industries, 473--478.
[41]
Scheidegger, A. E. 1957. The Physics of Flow through Porous Media. University of Toronto Press and Oxford University Press.
[42]
Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69--82.
[43]
Stam, J. 1999. Stable fluids. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121--128.
[44]
Twomey, S. A., Bohren, C. F., and Mergenthaler, J. L. 1986. Reflectance and albedo differences between wet and dry surfaces. Applied Optics 25 (feb), 431--437.
[45]
Zhu, Y., and Fox, P. J. 2001. Smoothed particle hydrodynamics model for diffusion through porous media. Transport in Porous Media 43, 3 (June), 441--471.
[46]
Zhu, Y., and Fox, P. J. 2002. Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J. Comput. Phys. 182, 2, 622--645.
[47]
Zhu, Y., Fox, P. J., and Morris, J. 1999. A pore-scale numerical model for flow through porous media. International journal for numerical and analytical methods in geomechanics 23, 9, 881--904.

Cited By

View all
  • (2024)Performance of Ergun’s Equation in Simulations of Heterogeneous Porous Medium Flow with Smoothed-Particle HydrodynamicsWater10.3390/w1619280116:19(2801)Online publication date: 1-Oct-2024
  • (2024)Isoline Tracking in Particle-Based Fluids Using Level-Set Learning RepresentationApplied Sciences10.3390/app1406264414:6(2644)Online publication date: 21-Mar-2024
  • (2024)Fluid SimulationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_55(725-730)Online publication date: 5-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 27, Issue 3
August 2008
844 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1360612
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2008
Published in TOG Volume 27, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. absorption
  2. deformables
  3. particle fluids
  4. porous flow
  5. smoothed particle hydrodynamics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)69
  • Downloads (Last 6 weeks)12
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Performance of Ergun’s Equation in Simulations of Heterogeneous Porous Medium Flow with Smoothed-Particle HydrodynamicsWater10.3390/w1619280116:19(2801)Online publication date: 1-Oct-2024
  • (2024)Isoline Tracking in Particle-Based Fluids Using Level-Set Learning RepresentationApplied Sciences10.3390/app1406264414:6(2644)Online publication date: 21-Mar-2024
  • (2024)Fluid SimulationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_55(725-730)Online publication date: 5-Jan-2024
  • (2023)Smoothed Particle Hydrodynamics Simulations of Porous Medium Flow Using Ergun’s Fixed-Bed EquationWater10.3390/w1513235815:13(2358)Online publication date: 26-Jun-2023
  • (2023)Yarn-Level Simulation of Hygroscopicity of Woven TextilesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.320657929:12(5250-5264)Online publication date: 1-Dec-2023
  • (2023)An Interactive Buoyancy Model for Procedural Animation and RenderingSoft Computing Applications10.1007/978-3-031-23636-5_48(604-620)Online publication date: 27-Oct-2023
  • (2022)Physcially Based Multi-Solvent Stains Simulation on TextileJournal of Computer-Aided Design & Computer Graphics10.3724/SP.J.1089.2022.1881234:02(315-324)Online publication date: 2-Dec-2022
  • (2022)An Optimized Material Point Method for Soil-Water Coupled SimulationAdvances in Computer Graphics10.1007/978-3-031-23473-6_44(569-581)Online publication date: 12-Sep-2022
  • (2021)Visual Simulation of Soil-Structure Destruction with Seepage FlowsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34801414:3(1-18)Online publication date: 27-Sep-2021
  • (2021)Simulation Method for Water and Cloth Interaction Phenomena based on LGAProceedings of the 13th International Conference on Computer Modeling and Simulation10.1145/3474963.3474967(23-31)Online publication date: 25-Jun-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media