Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fluorescent immersion range scanning

Published: 01 August 2008 Publication History

Abstract

The quality of a 3D range scan should not depend on the surface properties of the object. Most active range scanning techniques, however, assume a diffuse reflector to allow for a robust detection of incident light patterns. In our approach we embed the object into a fluorescent liquid. By analyzing the light rays that become visible due to fluorescence rather than analyzing their reflections off the surface, we can detect the intersection points between the projected laser sheet and the object surface for a wide range of different materials. For transparent objects we can even directly depict a slice through the object in just one image by matching its refractive index to the one of the embedding liquid. This enables a direct sampling of the object geometry without the need for computational reconstruction. This way, a high-resolution 3D volume can be assembled simply by sweeping a laser plane through the object. We demonstrate the effectiveness of our light sheet range scanning approach on a set of objects manufactured from a variety of materials and material mixes, including dark, translucent and transparent objects.

Supplementary Material

MOV File (a87-hullin.mov)

References

[1]
Ben-Ezra, M., and Nayar, S. 2003. What Does Motion Reveal About Transparency? In Proc. of ICCV'03, vol. 2, 1025--1032.
[2]
Beraldin, J.-A. 2004. Integration of Laser Scanning and Close-Range Photogrammetry - the Last Decade and Beyond. In Proceedings of the XXth ISPRS Congress, 972--983.
[3]
Blais, F. 2004. Review of 20 Years of Range Sensor Development. Journal of Electronic Imaging 13, 1, 231--243.
[4]
Chen, T., Goesele, M., and Seidel, H.-P. 2006. Mesostructure from Specularity. In Proc. of CVPR '06, 17--22.
[5]
Chen, T., Lensch, H. P. A., Fuchs, C., and Seidel, H.-P. 2007. Polarization and Phase-Shifting for 3D Scanning of Translucent Objects. In Proc. of CVPR '07, 1--8.
[6]
Clark, J., Trucco, E., and Wolff, L. B. 1997. Using Light Polarization in Laser Scanning. Image and Vision Computing 15, 1, 107--117.
[7]
Curless, B., and Levoy, M. 1995. Better Optical Triangulation Through Spacetime Analysis. In Proc. of ICCV'95, 987--994.
[8]
Davis, J., Yang, R., and Wang, L. 2005. BRDF Invariant Stereo using Light Transport Constancy. In Proc. of ICCV'05, 436--443.
[9]
Deusch, S., and Dracos, T. 2001. Time resolved 3d passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids. Meas. Sci. Technol., 12, 188--200.
[10]
Fuchs, C., Chen, T., Goesele, M., Theisel, H., and Seidel, H.-P. 2007. Density Estimation for Dynamic Volumes. Computers & Graphics 31, 2 (Apr.), 205--211.
[11]
Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of Time-Varying Participating Media. In Proc. of ACM SIGGRAPH 2005, ACM, 812--815.
[12]
Höhle, J. 1971. Reconstruction of the Underwater Object. Photogrammetric Engineering 37, 948--954.
[13]
Ihrke, I., Goldluecke, B., and Magnor, M. 2005. Reconstructing the Geometry of Flowing Water. In Proc. of ICCV'05, 1055--1060.
[14]
Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., and Heidrich, W. 2008. State of the Art in Transparent and Specular Object Reconstruction. In STAR Proceedings of Eurographics, 87--108.
[15]
Jin, H., Soatto, S., and Yezzi, A. J. 2005. Multi-View Stereo Reconstruction of Dense Shape and Complex Appearance. International Journal of Computer Vision 63, 3 (Jul), 175--189.
[16]
Kutulakos, K. N., and Steger, E. 2008. A Theory of Refractive and Specular 3D Shape by Light-Path Triangulation. International Journal of Computer Vision (IJCV) 76, 1, 13--29.
[17]
Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In Proc. of ACM SIGGRAPH 87, 163--169.
[18]
Maas, H.-G. 1995. New Developments in Multimedia Photogrammetry. In Optical 3D Measurement Techniques III, A. Grün and H. Kahmen, Eds. Wichmann Verlag.
[19]
Miyazaki, D., and Ikeuchi, K. 2005. Inverse Polarization Raytracing: Estimating Surface Shapes of Transparent Objects. In Proc. of CVPR '05, vol. 2, 910--917.
[20]
Morris, N. J. W., and Kutulakos, K. N. 2005. Dynamic Refraction Stereo. In Proc. of ICCV'05, 1573--1580.
[21]
Morris, N. J. W., and Kutulakos, K. N. 2007. Reconstructing the Surface of Inhomogeneous Transparent Scenes by Scatter-Trace Photography. In Proc. of ICCV'07, 1--8.
[22]
Murase, H. 1992. Surface Shape Reconstruction of a Nonrigid Transparent Object Using Refraction and Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 10 (October), 1045--1052.
[23]
Narasimhan, S. G., Nayar, S. K., Sun, B., and Koppal, S. J. 2005. Structured Light in Scattering Media. Proc. of ICCV'05 I, 420--427.
[24]
Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination. In Proc. of ACM SIGGRAPH 2006, 935--944.
[25]
Park, J., and Kak, A. C. 2004. Specularity Elimination in Range Sensing for Accurate 3D Modeling of Specular Objects. In Proceedings of 3DPVT'04, 707--714.
[26]
Park, J., and Kak, C. 2008. 3D Modeling of Optically Challenging Objects. IEEE Trans. on Visualization and Computer Graphics 14, 2 (March/April), 246--262.
[27]
Remondino, F., and El-Hakim, S. 2006. Image Based 3D Modeling: A Review. The Photogrammetric Record 21, 115, 269--291.
[28]
Saito, M., Sato, Y., Ikeuchi, K., and Kashiwagi, H. 1999. Measurement of Surface Orientations of Transparent Objects using Polarization in Highlight. In Proc. of CVPR '99, vol. 1, 381--386.
[29]
Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sorensen, J., Baldock, R., and Davidson, D. 2002. Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies. Science 296, 19, 541--545.
[30]
Thorlabs, Inc. Transmission curve of FEL0550 longpass filter. http://www.thorlabs.com/Thorcat/7600/7672-S01.pdf.
[31]
Trifonov, B., Bradley, D., and Heidrich, W. 2006. Tomographic Reconstruction of Transparent Objects. In Proc. of EGSR'06, 51--60.
[32]
Trucco, E., and Fisher, R. B. 1994. Acquisition of Consistent Range Data Using Local Calibration. In IEEE International Conference on Robotics and Automation, 3410--3415.
[33]
TU Graz, Institute of Analytical Chemistry. Database of fluorescent dyes. http://www.fluorophores.org.
[34]
Zickler, T., Belhumeur, P. N., and Kriegman, D. J. 2002. Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction. International Journal of Computer Vision (IJCV) 49, 2--3, 215--227.

Cited By

View all
  • (2024)RFTrans: Leveraging Refractive Flow of Transparent Objects for Surface Normal Estimation and ManipulationIEEE Robotics and Automation Letters10.1109/LRA.2024.33648379:4(3735-3742)Online publication date: Apr-2024
  • (2023)Large Scale Optical Projection Tomography without the Use of Refractive-Index-Matching LiquidSensors10.3390/s2324981423:24(9814)Online publication date: 14-Dec-2023
  • (2023)Differentiable Dynamic Visible-Light TomographySIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618166(1-12)Online publication date: 10-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 27, Issue 3
August 2008
844 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1360612
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2008
Published in TOG Volume 27, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D scanning
  2. fluorescent dye
  3. transparent surfaces

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)2
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)RFTrans: Leveraging Refractive Flow of Transparent Objects for Surface Normal Estimation and ManipulationIEEE Robotics and Automation Letters10.1109/LRA.2024.33648379:4(3735-3742)Online publication date: Apr-2024
  • (2023)Large Scale Optical Projection Tomography without the Use of Refractive-Index-Matching LiquidSensors10.3390/s2324981423:24(9814)Online publication date: 14-Dec-2023
  • (2023)Differentiable Dynamic Visible-Light TomographySIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618166(1-12)Online publication date: 10-Dec-2023
  • (2022)Use of structured light in 3D reconstruction of transparent objectsApplied Optics10.1364/AO.44470861:5(B314)Online publication date: 18-Jan-2022
  • (2022)Eikonal Fields for Refractive Novel-View SynthesisACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530706(1-9)Online publication date: 27-Jul-2022
  • (2022)Surface Normals and Shape From WaterIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2021.312196344:12(9150-9162)Online publication date: 1-Dec-2022
  • (2022)Simultaneous measurement of 3D surface and thickness of large area and thickness transparent materials based on polarization model and TOF correctionOptik10.1016/j.ijleo.2021.168560254(168560)Online publication date: Mar-2022
  • (2021)Study on the Creation of Realistic 3D Models of Building Glass Through the Combination of Photogrammetry and Image Editing SoftwareJournal of Digital Contents Society10.9728/dcs.2021.22.10.155122:10(1551-1558)Online publication date: 31-Oct-2021
  • (2020)3D Transparent Object Detection and Reconstruction Based on Passive Mode Single-Pixel ImagingSensors10.3390/s2015421120:15(4211)Online publication date: 29-Jul-2020
  • (2020)Differentiable refraction-tracing for mesh reconstruction of transparent objectsACM Transactions on Graphics10.1145/3414685.341781539:6(1-13)Online publication date: 27-Nov-2020
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media