Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1518701.1518895acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers

Published: 04 April 2009 Publication History

Abstract

Machine learning is an increasingly used computational tool within human-computer interaction research. While most researchers currently utilize an iterative approach to refining classifier models and performance, we propose that ensemble classification techniques may be a viable and even preferable alternative. In ensemble learning, algorithms combine multiple classifiers to build one that is superior to its components. In this paper, we present EnsembleMatrix, an interactive visualization system that presents a graphical view of confusion matrices to help users understand relative merits of various classifiers. EnsembleMatrix allows users to directly interact with the visualizations in order to explore and build combination models. We evaluate the efficacy of the system and the approach in a user study. Results show that users are able to quickly combine multiple classifiers operating on multiple feature sets to produce an ensemble classifier with accuracy that approaches best-reported performance classifying images in the CalTech-101 dataset.

References

[1]
Ankerst, M., Elsen, C., Ester, M. and Kriegel, H.-P. Visual classification: an interactive approach to decision tree construction. Proc. KDD 1999, (1999), 392--396.
[2]
Becker, B., Kohavi, R. and Sommerfield, D. Visualizing the Simple Bayesian Classifier. {ed.} Fayyad, U., Grinstein, G. and Wierse, A. (2001), 237--249.
[3]
Bertin, J. Semiology of graphics. University of Wisconsin Press, Madison, WI, USA,1984.
[4]
Bosch, A., Zisserman, A. and Munoz, X. Representing shape with a spatial pyramid kernel. Proc. CIVR 2007, (2007), 401--408.
[5]
Breiman, L. Bagging predictors. Machine Learning (1996), 123--140.
[6]
Caragea, D., Cook, D. and Honavar, V.G. Gaining insights into support vector machine pattern classifiers using projection-based tour methods. Proc. KDD 2001, (2001), 251--256.
[7]
Dai, J. and Cheng, J. HMMEditor: a visual editing tool for profile hidden Markov models. BMC Genomics 2008, 9 (2008).
[8]
Drummond, C. and Holte, R.C. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65, 1 (2006), 95--130.
[9]
Evgeniou, T., Pontil, M. and Elisseeff, A. Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers. Machine Learning, 55 (2004), 71--97.
[10]
Fails, J.A. and Olsen, D.R.J. Interactive machine learning. Proc. IUI 2003, (2003), 39--45.
[11]
Fei-Fei, L., Fergus, R. and Perona, P. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. CVPRW, 12 (2004), 178.
[12]
Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P. and Hudson, S.E. Examining task engagement in sensor-based statistical models of human interruptibility. Proc. CHI 2005, (2005), 331--340.
[13]
Frank, E. and Hall, M. Visualizing class probability estimators. Lecture Notes in Artificial Intelligence 2838, Springer (2003), 168--179.
[14]
Garner, S.R. WEKA: The Waikato Environment for Knowledge Analysis. Proc. New Zealand Computer Science Research Students Conference (1995), 57--64.
[15]
Grauman, K. and Darrell, T. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features. Proc. ICCV 2005, (2005), 1458--1465.
[16]
Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P. and Rao, R.P. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. Proc. CHI 2008, (2008), 835--844.
[17]
Henry, N. and Fekete, J.-D. MatrixExplorer: a Dual-Representation System to Explore Social Networks. IEEE Trans Visualization and Computer Graphics, 12, (2006), 677--684.
[18]
Kapoor, A., Grauman, K., Urtasun, R. and Darrell, T. Active Learning with Gaussian Processes for Object Categorization. Proc. ICCV 2007, (2007), 1--8.
[19]
Kapoor, A. and Horvitz, E. Experience sampling for building predictive user models: a comparative study. Proc. CHI 2008, (2008), 657--666.
[20]
Kim, B., Lee, B. and Seo, J. Visualizing set concordance with permutation matrices and fan diagrams. Interacting with Computers, 19, 5-6 (2007), 630--643.
[21]
Kittler, J., Hatef, M., Duin, R.P. and Matas, J. On Combining Classifiers. IEEE TPAMI, 20, 3 (1998), 226--239.
[22]
Lazebnik, S., Schmid, C. and Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. Proc. CVPR 2006, (2006), 2169--2178.
[23]
Mäkinen, E. and Siirtola, H. The Barycenter Heuristic and the Reorderable Matrix. Informatica (Slovenia), 29, 3 (2005), 357--364.
[24]
Meyer, M., Lee, H., Barr, A. and Desbrun, M. Generalized Barycentric Coordinates on Irregular Polygons. Journal of Graphics Tools, 7, 1 (2002), 13--22.
[25]
Moustakis, V. Do People in HCI Use Machine Learning? HCI, 2, (1997), 95--98.
[26]
Oliver, N., Garg, A. and Horvitz, E. Layered representations for learning and inferring office activity from multiple sensory channels. Computer Vision and Image Understanding, 96, 2 (2004) 163--180.
[27]
Patel, K., Fogarty, J., Landay, J.A. and Harrison, B. Examining Difficulties Software Developers Encounter in the Adoption of Statistical Machine Learning. Proc. AAAI 2008, (2008), 1563--1566.
[28]
Picard, R.W. Affective computing. MIT Press, Cambridge, MA, USA, 1997.
[29]
Rheingans, P. and desJardins, M. Visualizing High-Dimensional Predictive Model Quality. Proc. VIS 2000, (2000), 493--496.
[30]
Saponas, T.S., Tan, D.S., Morris, D. and Balakrishnan, R. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. Proc. CHI 2008, (2008), 515--524.
[31]
Schapire, R.E. The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Springer (2003).
[32]
Stiglic, G., Mertik, M., Podgorelec, V. and Kokol, P. Using Visual Interpretation of Small Ensembles in Microarray Analysis. Proc. CMBS 2006, (2006), 691--695.
[33]
Urbanek, S. Exploring Statistical Forests. Proc. of the 2002 Joint Statistical Meeting, Springer (2002).
[34]
Varma, M. and Ray, D. Learning The Discriminative Power-Invariance Trade-Off. Proc. ICCV 2007, (2007), 1--8.
[35]
Wang, J., Yu, B. and Gasser, L. Classification Visualization with Shaded Similarity Matrix, Technical Report, GSLIS University of Illinois at Urbana-Champaign, (2002).
[36]
Ware, M., Frank, E., Holmes, G., Hall, M. and Witten, I.H. Interactive machine learning: letting users build classifiers. Int. J. Human-Computer Studies, 55, 3 (2001), 281--292.
[37]
Zhang, H., Berg, A. C., Maire, M. and Malik, J. SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition. Proc. CVPR 2006, (2006), 2126--2136.

Cited By

View all
  • (2025)Seeing Is Believing: The Role of Scatterplots in Recommender System Trust and Decision-MakingAdvances in Visual Computing10.1007/978-3-031-77392-1_32(425-438)Online publication date: 22-Jan-2025
  • (2024)Predicción de riesgo cardiovascular mediante aprendizaje automático: un análisis comparativo entre técnicasIngeniería y Competitividad10.25100/iyc.v26i1.1322926:1Online publication date: 26-Feb-2024
  • (2024)Image-to-Text Translation for Interactive Image Recognition: A Comparative User Study with Non-expert UsersJournal of Information Processing10.2197/ipsjjip.32.35832(358-368)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CHI '09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2009
      2426 pages
      ISBN:9781605582467
      DOI:10.1145/1518701
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 04 April 2009

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. caltech-101
      2. ensemble classifiers
      3. interactive machine learning
      4. object recognition
      5. visualization

      Qualifiers

      • Research-article

      Conference

      CHI '09
      Sponsor:

      Acceptance Rates

      CHI '09 Paper Acceptance Rate 277 of 1,130 submissions, 25%;
      Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

      Upcoming Conference

      CHI 2025
      ACM CHI Conference on Human Factors in Computing Systems
      April 26 - May 1, 2025
      Yokohama , Japan

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)116
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Seeing Is Believing: The Role of Scatterplots in Recommender System Trust and Decision-MakingAdvances in Visual Computing10.1007/978-3-031-77392-1_32(425-438)Online publication date: 22-Jan-2025
      • (2024)Predicción de riesgo cardiovascular mediante aprendizaje automático: un análisis comparativo entre técnicasIngeniería y Competitividad10.25100/iyc.v26i1.1322926:1Online publication date: 26-Feb-2024
      • (2024)Image-to-Text Translation for Interactive Image Recognition: A Comparative User Study with Non-expert UsersJournal of Information Processing10.2197/ipsjjip.32.35832(358-368)Online publication date: 2024
      • (2024)ConfusionLens: Focus+Context Visualization Interface for Performance Analysis of Multiclass Image ClassifiersACM Transactions on Interactive Intelligent Systems10.1145/370013915:1(1-21)Online publication date: 17-Oct-2024
      • (2024)SpaceEditing: A Latent Space Editing Interface for Integrating Human Knowledge into Deep Neural NetworksProceedings of the 29th International Conference on Intelligent User Interfaces10.1145/3640543.3645211(489-503)Online publication date: 18-Mar-2024
      • (2024)Assessing User Trust in Active Learning Systems: Insights from Query Policy and Uncertainty VisualizationProceedings of the 29th International Conference on Intelligent User Interfaces10.1145/3640543.3645207(772-786)Online publication date: 18-Mar-2024
      • (2024)Understanding Novice's Annotation Process For 3D Semantic Segmentation Task With Human-In-The-LoopProceedings of the 29th International Conference on Intelligent User Interfaces10.1145/3640543.3645150(444-454)Online publication date: 18-Mar-2024
      • (2024)EXMOS: Explanatory Model Steering through Multifaceted Explanations and Data ConfigurationsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642106(1-27)Online publication date: 11-May-2024
      • (2024)SEAM-EZ: Simplifying Stateful Analytics through Visual ProgrammingProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642055(1-23)Online publication date: 11-May-2024
      • (2024)GeoExplainer: A Visual Analytics Framework for Spatial Modeling Contextualization and Report GenerationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332735930:1(1391-1401)Online publication date: 1-Jan-2024
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media