Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1835698.1835783acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article

Distributed algorithms for edge dominating sets

Published: 25 July 2010 Publication History

Abstract

An edge dominating set for a graph G is a set D of edges such that each edge of G is in D or adjacent to at least one edge in D. This work studies deterministic distributed approximation algorithms for finding minimum-size edge dominating sets. The focus is on anonymous port-numbered networks: there are no unique identifiers, but a node of degree d can refer to its neighbours by integers 1, 2, ..., d. The present work shows that in the port-numbering model, edge dominating sets can be approximated as follows: in d-regular graphs, to within 4-6/(d+1) for an odd d and to within 4-2/d for an even d; and in graphs with maximum degree Δ, to within 4-2/(Δ-1) for an odd Δ and to within 4-2/Δ for an even Δ. These approximation ratios are tight for all values of d and Δ: there are matching lower bounds.

References

[1]
R. B. Allan and R. Laskar. On domination and independent domination numbers of a graph. Discrete Math., 23(2):73--76, 1978.
[2]
D. Angluin. Local and global properties in networks of processors. In Proc. 12th Symposium on Theory of Computing (STOC 1980), pages 82--93. ACM Press, 1980.
[3]
M. Åstrand, P. Floréen, V. Polishchuk, J. Rybicki, J. Suomela, and J. Uitto. A local 2-approximation algorithm for the vertex cover problem. In Proc. 23rd Symposium on Distributed Computing (DISC 2009), volume 5805 of LNCS, pages 191--205. Springer, 2009.
[4]
M. Åstrand and J. Suomela. Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In Proc. 22nd Symposium on Parallelism in Algorithms and Architectures (SPAA 2010). ACM Press, 2010.
[5]
H. Attiya, M. Snir, and M. K. Warmuth. Computing on an anonymous ring. J. ACM, 35(4):845--875, 1988.
[6]
B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM, 41(1):153--180, 1994.
[7]
P. Boldi and S. Vigna. An effective characterization of computability in anonymous networks. In Proc. 15th Symposium on Distributed Computing (DISC 2001), volume 2180 of LNCS, pages 33--47. Springer, 2001.
[8]
R. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10-approximation algorithm for a generalization of the weighted edge-dominating set problem. J. Comb. Optim., 5(3):317--326, 2001.
[9]
M. Chlebík and J. Chlebíková. Approximation hardness of edge dominating set problems. J. Comb. Optim., 11(3):279--290, 2006.
[10]
A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Fast distributed approximations in planar graphs. In Proc. 22nd Symposium on Distributed Computing (DISC 2008), volume 5218 of LNCS, pages 78--92. Springer, 2008.
[11]
R. Diestel. Graph Theory. Springer, 3rd edition, 2005.
[12]
T. Fujito and H. Nagamochi. A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Appl. Math., 118(3):199--207, 2002.
[13]
M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of computing maximal matchings. In Proc. 9th Symposium on Discrete Algorithms (SODA 1998), pages 219--225. SIAM, 1998.
[14]
M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of computing maximal matchings. SIAM J. Discrete Math., 15(1):41--57, 2001.
[15]
H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms, 26(2):238--274, 1998.
[16]
D. R. Kowalski and A. Malinowski. How to meet in anonymous network. Theoret. Comput. Sci., 399(1--2):141--156, 2008.
[17]
C. Lenzen and R. Wattenhofer. Leveraging Linial's locality limit. In Proc. 22nd Symposium on Distributed Computing (DISC 2008), volume 5218 of LNCS, pages 394--407. Springer, 2008.
[18]
M. Naor and L. Stockmeyer. What can be computed locally? SIAM J. Comput., 24(6):1259--1277, 1995.
[19]
A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks. Distributed Computing, 14(2):97--100, 2001.
[20]
J. Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15(1):193--220, 1891.
[21]
V. Polishchuk and J. Suomela. A simple local 3-approximation algorithm for vertex cover. Inform. Process. Lett., 109(12):642--645, 2009.
[22]
J. Suomela. Survey of local algorithms, 2009. Manuscript submitted for publication.
[23]
M. Yamashita and T. Kameda. Computing functions on asynchronous anonymous networks. Mathematical Systems Theory, 29(4):331--356, 1996.
[24]
M. Yamashita and T. Kameda. Computing on anonymous networks: Part I - characterizing the solvable cases. IEEE Trans. Parallel Distrib. Systems, 7(1):69--89, 1996.
[25]
M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J. Appl. Math., 38(3):364--372, 1980.

Cited By

View all
  • (2018)Improved deterministic distributed matching via roundingDistributed Computing10.1007/s00446-018-0344-4Online publication date: 4-Oct-2018
  • (2016)Fast and Simple Local Algorithms for 2-Edge Dominating Sets and 3-Total Vertex CoversWALCOM: Algorithms and Computation10.1007/978-3-319-30139-6_20(251-262)Online publication date: 2016
  • (2015)Weak models of distributed computing, with connections to modal logicDistributed Computing10.1007/s00446-013-0202-328:1(31-53)Online publication date: 1-Feb-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
PODC '10: Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing
July 2010
494 pages
ISBN:9781605588889
DOI:10.1145/1835698
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. approximation
  2. edge dominating set
  3. port-numbered network

Qualifiers

  • Research-article

Conference

PODC '10
Sponsor:

Acceptance Rates

Overall Acceptance Rate 740 of 2,477 submissions, 30%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)1
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Improved deterministic distributed matching via roundingDistributed Computing10.1007/s00446-018-0344-4Online publication date: 4-Oct-2018
  • (2016)Fast and Simple Local Algorithms for 2-Edge Dominating Sets and 3-Total Vertex CoversWALCOM: Algorithms and Computation10.1007/978-3-319-30139-6_20(251-262)Online publication date: 2016
  • (2015)Weak models of distributed computing, with connections to modal logicDistributed Computing10.1007/s00446-013-0202-328:1(31-53)Online publication date: 1-Feb-2015
  • (2013)Lower bounds for local approximationJournal of the ACM10.1145/252840560:5(1-23)Online publication date: 28-Oct-2013
  • (2013)Survey of local algorithmsACM Computing Surveys10.1145/2431211.243122345:2(1-40)Online publication date: 12-Mar-2013
  • (2012)Lower bounds for local approximationProceedings of the 2012 ACM symposium on Principles of distributed computing10.1145/2332432.2332465(175-184)Online publication date: 16-Jul-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media