Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1840845.1840855acmconferencesArticle/Chapter ViewAbstractPublication PagesislpedConference Proceedingsconference-collections
research-article

Low-power sub-threshold design of secure physical unclonable functions

Published: 18 August 2010 Publication History

Abstract

The unique and unpredictable nature of silicon enables the use of physical unclonable functions (PUFs) for chip identification and authentication. Since the function of PUFs depends on minute uncontrollable process variations, a low supply voltage can benefit PUFs by providing high sensitivity to variations and low power consumption as well. Motivated by this, we explore the feasibility of sub-threshold arbiter PUFs in 45nm CMOS technology. By modeling process variations and interconnect imbalance effects at the post-layout design level, we optimize the PUF supply voltage for the minimum power-delay product and investigate the trade-offs on PUF uniqueness and reliability. Moreover, we demonstrate that such a design optimization does not compromise the security of PUFs regarding modeling attacks and side-channel analysis attacks. Our final 64-stage sub-threshold PUF design only needs 418 gates and consumes 0.047 pJ energy per cycle, which is very promising for low-power wireless sensing and security applications.

References

[1]
B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical random functions. In Proceedings of the 9th ACM conference on Computer and communications security, pages 148--160, 2002.
[2]
R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions. Science, 297(6):2026--2030, 2002.
[3]
G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and secret key generation. In ACM/IEEE Design Automation Conference, pages 9--14, 2007.
[4]
J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls. FPGA intrinsic PUFs and their use for IP protection. In Proceedings of the Workshop on Cryptographic Hardware and Embedded Security, pages 63--80, September 2007.
[5]
D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up SRAM State as an Identifying Fingerprint and Source of True Random Numbers. IEEE Transactions on Computers, 58(9):1198--1210, 2009.
[6]
D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In Proceedings of Symposium on Security and Privacy, pages 129--142, 2008.
[7]
T. S. Heydt-Benjamin, D. V. Bailey, K. Fu, A. Juels, and T. OHare. Vulnerabilities in First-Generation RFID-enabled Credit Cards. In Financial Cryptography, 2007.
[8]
Y. Oren and A. Shamir. Remote password extraction from RFID tags. IEEE Transactions on Computers, 56(9):1292--1296, 2007.
[9]
K. Nohl and D. Evans. Reverse-engineering a cryptographic RFID tag. In USENIX Security Symposium, pages 185--193, 2008.
[10]
A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols. Lecture notes in computer science, 3621: 293, 2005.
[11]
T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A survey of lightweight-cryptography implementations. IEEE Design & Test of Computers, pages 522--533, 2007.
[12]
T. Popp, E. Oswald, and S. Mangard. Power analysis attacks and countermeasures. IEEE Design & Test of Computers, 24(6):535--543, 2007.
[13]
L. Lin and W. P. Burleson. Analysis and mitigation of process variation impacts on power-attack tolerance. In ACM/IEEE DAC, pages 238--243, 2009.
[14]
Verayo PUF RFID. http://www.verayo.com/product/pufr_d.html, 2008.
[15]
R. Maes, P. Tuyls, and I. Verbauwhede. Low-overhead implementation of a soft decision helper data algorithm for sram pufs. In CHES, pages 332--347. Springer-Verlag, 2009.
[16]
B. H. Calhoun, A. Wang, and A. P. Chandrakasan. Modeling and sizing for minimum energy operation in sub-threshold circuits. IEEE Journal of Solid-State Circuits, volume 40, pages 1778--1786, 2005.
[17]
S. Hanson, B. Zhai, D. Blaauw, D. Sylvester, A. Bryant, and X. Wang. Energy optimality and variability in subthreshold design. In ACM/IEEE ISLPED, pages 363--365, 2006.
[18]
V. Vivekraja and L. Nazhandali. Circuit-Level Techniques for Reliable Physically Uncloneable Functions. In IEEE HOST, pages 30--35, 2009.
[19]
International Technology Roadmap for Semiconductors. 2006 ITRS report, http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
[20]
D. Bol, D. Kamel, D. Flandre, and J. D. Legat. Nanometer mosfet e_ects on the minimum-energy point of 45nm subthreshold logic. In ISLPED, pages 3--8, 2009.
[21]
S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal. Design and implementation of puf-based "unclonable" RFID ICs for anti-counterfeiting and security applications. In IEEE International Conference on RFID, pages 58--64, 2008.
[22]
D. Lim. Extracting secret keys from integrated circuits. M.S. thesis Cambridge: Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., May 2004.
[23]
M. Majzoobi, F. Koushanfar, and M. Potkonjak. Lightweight secure pufs. In ICCAD, pages 670--673, 2008.
[24]
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pages 144--152, 1992.
[25]
T. Joachims. Making large scale SVM learning practical. http://svmlight.joachims.org/, 1999.
[26]
S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer-Verlag New York, Inc., 2007.
[27]
D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas. Extracting secret keys from integrated circuits. IEEE Transactions on VLSI, 13(10):1200--1205, 2005.

Cited By

View all
  • (2025)Improving the PUF’s ReliabilityLightweight Hardware Security and Physically Unclonable Functions10.1007/978-3-031-76328-1_8(59-86)Online publication date: 8-Jan-2025
  • (2024)Perimeter-Gated Single-Photon Avalanche Diode Arrays as Hardware Security PrimitivesSingle-Photon Avalanche Diodes and Photon Counting Systems10.1007/978-3-031-64334-7_5(91-116)Online publication date: 11-Jun-2024
  • (2023)D2D-MAP: A Drone to Drone Authentication Protocol Using Physical Unclonable FunctionsIEEE Transactions on Vehicular Technology10.1109/TVT.2022.322461172:4(5079-5093)Online publication date: Apr-2023
  • Show More Cited By

Index Terms

  1. Low-power sub-threshold design of secure physical unclonable functions

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        ISLPED '10: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design
        August 2010
        458 pages
        ISBN:9781450301466
        DOI:10.1145/1840845
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        In-Cooperation

        • IEEE CAS

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 18 August 2010

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. RFID
        2. embedded system security
        3. physical unclonable function
        4. sub-threshold circuits

        Qualifiers

        • Research-article

        Conference

        ISLPED'10
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 398 of 1,159 submissions, 34%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)14
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 25 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)Improving the PUF’s ReliabilityLightweight Hardware Security and Physically Unclonable Functions10.1007/978-3-031-76328-1_8(59-86)Online publication date: 8-Jan-2025
        • (2024)Perimeter-Gated Single-Photon Avalanche Diode Arrays as Hardware Security PrimitivesSingle-Photon Avalanche Diodes and Photon Counting Systems10.1007/978-3-031-64334-7_5(91-116)Online publication date: 11-Jun-2024
        • (2023)D2D-MAP: A Drone to Drone Authentication Protocol Using Physical Unclonable FunctionsIEEE Transactions on Vehicular Technology10.1109/TVT.2022.322461172:4(5079-5093)Online publication date: Apr-2023
        • (2023)Challenge-Response Pair Space Enhancement for Imager-Based Physically Unclonable Functions2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS57524.2023.10405869(217-221)Online publication date: 6-Aug-2023
        • (2023)Concealable Physically Unclonable Functions and Key Generation Using a Geiger Mode Imager2023 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS46773.2023.10182123(1-5)Online publication date: 21-May-2023
        • (2023)Design And Analysis Of Physical Unclonable Function2023 2nd International Conference for Innovation in Technology (INOCON)10.1109/INOCON57975.2023.10101289(1-4)Online publication date: 3-Mar-2023
        • (2023)Arbiter PUF—A Review of Design, Composition, and Security AspectsIEEE Access10.1109/ACCESS.2023.326401611(33979-34004)Online publication date: 2023
        • (2023)Recursive Challenge Feed Arbiter Physical Unclonable Function (RC-FAPUF) In 180nm Process For Reliable Key Generation In IOT SecurityIETE Technical Review10.1080/02564602.2023.221453941:1(73-84)Online publication date: 18-May-2023
        • (2022)Review on Arbiter Physical Unclonable Function and its Implementation in FPGA for IoT Security Applications2022 6th International Conference on Devices, Circuits and Systems (ICDCS)10.1109/ICDCS54290.2022.9780766(369-374)Online publication date: 21-Apr-2022
        • (2022)Comparative Analysis of Delay-Based and Memory-Based Physical Unclonable FunctionsIETE Technical Review10.1080/02564602.2022.214876240:5(641-652)Online publication date: 30-Nov-2022
        • Show More Cited By

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media