Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fast simulation of skeleton-driven deformable body characters

Published: 22 October 2011 Publication History

Abstract

We propose a fast physically-based simulation system for skeleton-driven deformable body characters. Our system can generate realistic motions of self-propelled deformable body characters by considering the two-way interactions among the skeleton, the deformable body, and the environment in the dynamic simulation. It can also compute the passive jiggling behavior of a deformable body driven by a kinematic skeletal motion. We show that a well-coordinated combination of: (1) a reduced deformable body model with nonlinear finite elements, (2) a linear-time algorithm for skeleton dynamics, and (3) explicit integration can boost simulation speed to orders of magnitude faster than existing methods, while preserving modeling accuracy as much as possible. Parallel computation on the GPU has also been implemented to obtain an additional speedup for complicated characters. Detailed discussions of our engineering decisions for speed and accuracy of the simulation system are presented in the article. We tested our approach with a variety of skeleton-driven deformable body characters, and the tested characters were simulated in real time or near real time.

Supplementary Material

kim (kim.zip)
Supplemental movie and image files for, Fast simulation of skeleton-driven deformable body characters

References

[1]
Albro, J. V., Sohl, G. A., Bobrow, J. E., and Park, F. C. 2000. On the computation of optimal high-dives. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, 3958--3963.
[2]
Baraff, D. 1996. Linear-time dynamics using lagrange multipliers. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'96). ACM, New York, 137--146.
[3]
Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). ACM, New York, 43--54.
[4]
Barbič, J. and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph 24, 3, 982--990.
[5]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graphics. 26, 3.
[6]
Basar, Y. and Weichert, D. 2000. Nonlinear Continuum Mechanics of Solids. Springer.
[7]
Bonet, J. and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
[8]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graphics. 21, 3.
[9]
Bro-nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum. 57--66.
[10]
Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2005. Physically based rigging for deformable characters. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM, New York, 301--310.
[11]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002a. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3.
[12]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002b. A multiresolution framework for dynamic deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 41--47.
[13]
Choi, K.-J. and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3.
[14]
Choi, M. G. and Ko, H.-S. 2005. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Trans. Visual. Comput. Graph. 11, 91--101.
[15]
Comas, O., Taylor, Z. A., Allard, J., Ourselin, S., Cotin, S., and Passenger, J. 2008. Efficient nonlinear fem for soft tissue modelling and its gpu implementation within the open source framework sofa. In Proceedings of the 4th International Symposium on Biomedical Simulation (ISBMS'08). Springer-Verlag, Berlin, 28--39.
[16]
de Farias, T. S. M., Almeida, M. W. S., Teixeira, J. M. X., Teichrieb, V., and Kelner, J. 2008. A high performance massively parallel approach for real time deformable body physics simulation. In Proceedings of the 20th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'08). 45--52.
[17]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. Visual. Comput. Graph. 3, 3, 201--214.
[18]
Featherstone, R. 1983. The calculation of robot dynamics using articulated-body inertias. Int. J. Robotics Res. 2, 1, 13--30.
[19]
Featherstone, R. 1987. Robot Dynamics Algorithms. Kluwer.
[20]
Galoppo, N., Otaduy, M. A., Mecklenburg, P., Gross, M., and Lin, M. C. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In ACM SIGGRAPH /Eurographics Symposium on Computer Animation, M.-P. Cani and J. O'Brien, Eds., Eurographics Association, 73--82.
[21]
Galoppo, N., Otaduy, M. A., Tekin, S., Gross, M., and Lin, M. C. 2007. Soft articulated characters with fast contact handling. Comput. Graph. Forum 26, 3.
[22]
Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. The Johns Hopkins University Press.
[23]
Govindaraju, N. K., Redon, S., Lin, M. C., and Manocha, D. 2003. Cullide: interactive collision detection between complex models in large environments using graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware (HWWS'03). Eurographics Association, 25--32.
[24]
Grossman, R. L., Nerode, A., Ravn, A. P., and Rischel, H., Eds. 1993. Hybrid Systems. Lecture Notes in Computer Science, vol. 736, Springer.
[25]
Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Graphics Interface Conference. Canadian Human-Computer Commnication Society, 247--256.
[26]
Huang, J., Chen, L., Liu, X., and Bao, H. 2008. Efficient mesh deformation using tetrahedron control mesh. In Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM'08). ACM, New York, 241--247.
[27]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3.
[28]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'04). Eurographics Association, 131--140.
[29]
James, D. L. and Pai, D. K. 1999. ArtDefo-accurate real time deformable objects. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99), A. Rockwood, Ed., ACM Press, N.Y., 65--72.
[30]
James, D. L. and Pai, D. K. 2002. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3.
[31]
Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3.
[32]
Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3.
[33]
Kim, J. and Pollard, N. S. 2011. Direct control of simulated non-human characters. IEEE Comput. Graph. Appl. 31, 4.
[34]
Kim, T. and James, D. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5.
[35]
Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 1--17.
[36]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 49--54.
[37]
Müller, M. and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface (GI'04). Canadian Human-Computer Communications Society, 239--246.
[38]
Murray, R. M., Li, Z., and Sastry, S. S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press.
[39]
Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 4, 809--836.
[40]
Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3.
[41]
Nesme, M., Payan, Y., and Faure, F. 2006. Animating shapes at arbitrary resolution with non-uniform stiffness. In Proceedings of the Eurographics Workshop in Virtual Reality Interaction and Physical Simulation (VRIPHYS). Eurographics.
[42]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3.
[43]
O'Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 137--146.
[44]
Park, F. C., Bobrow, J. E., and Ploen, S. R. 1995. A lie group formulation of robot dynamics. Int. J. Robotics Res. 14, 6, 609--618.
[45]
Pentland, A. and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'89). ACM, New York, 215--222.
[46]
Rathod, H. T., Venkatesudu, B., and Nagaraja, K. V. 2005. Gauss legendre quadrature formulas over a tetrahedron. Numer. Math. Part. Diff. Eqs. 22, 1, 197--219.
[47]
Rocchini, C. and Cignoni, P. 2000. Generating random points in a tetrahedron. J. Graph. Tools 5, 4, 9--12.
[48]
Schöberl, J. 1997. NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual Sci. 1, 41--52.
[49]
Sederberg, T. W. and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4, 151--160.
[50]
Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2008. Example-based dynamic skinning in real time. ACM Trans. Graph. 27, 3.
[51]
Shinar, T., Schroeder, C., and Fedkiw, R. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). ACM.
[52]
Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07), M. Gleicher and D. Thalmann, Eds., Eurographics Association, 81--90.
[53]
Smith, O. K. 1961. Eigenvalues of a symmetric 3 × 3 matrix. Commu. ACM 4, 4, 168.
[54]
Stern, A. and Desbrun, M. 2006. Discrete geometric mechanics for variational time integrators. In ACM SIGGRAPH Courses. ACM, New York, 75--80.
[55]
Sulejmanpašić, A. and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165--179.
[56]
Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 68--74.
[57]
Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM Press, New York, 181--190.
[58]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). ACM, New York, 205--214.
[59]
Terzopoulos, D. and Witkin, A. 1988. Physically based models with rigid and deformable components. IEEE Comput. Graphi. Appli. 8, 6, 41--51.
[60]
Turner, R. and Thalmann, D. 1993. The elastic surface layer model for animated character construction. In Proceedings of Computer Graphics International Conference. Springer-Verlag, 399--412.
[61]
van de Panne, M. and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Proceedings of the Computer Animation and Simulation. D. Terzopoulos and D. Thalmann, Eds., Springer-Verlag, 165--177.
[62]
Wojtan, C. and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3.
[63]
Zhang, X. and Kim, Y. J. 2007. Interactive collision detection for deformable models using streaming AABBs. IEEE Trans. Visual. Comput. Graph. 13, 2, 318--329.
[64]
Zordan, V. B. and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 89--96.

Cited By

View all
  • (2024)Research progress in human-like indoor scene interactionJournal of Image and Graphics10.11834/jig.24000429:6(1575-1606)Online publication date: 2024
  • (2024)Efficient Position-Based Deformable Colon Modeling for Endoscopic Procedures SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657454(1-10)Online publication date: 13-Jul-2024
  • (2022)Physics-Based Simulation of Soft-Body Deformation Using RGB-D DataSensors10.3390/s2219722522:19(7225)Online publication date: 23-Sep-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 5
October 2011
198 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2019627
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 October 2011
Accepted: 01 April 2011
Revised: 01 January 2011
Received: 01 January 2010
Published in TOG Volume 30, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Physics simulation
  2. deformable body
  3. finite element method
  4. hybrid dynamics
  5. mesh embedding
  6. parallel computing
  7. physically-based simulation
  8. skeleton
  9. skeleton-driven deformable body

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)47
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Research progress in human-like indoor scene interactionJournal of Image and Graphics10.11834/jig.24000429:6(1575-1606)Online publication date: 2024
  • (2024)Efficient Position-Based Deformable Colon Modeling for Endoscopic Procedures SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657454(1-10)Online publication date: 13-Jul-2024
  • (2022)Physics-Based Simulation of Soft-Body Deformation Using RGB-D DataSensors10.3390/s2219722522:19(7225)Online publication date: 23-Sep-2022
  • (2022)Differentiable Simulation of Inertial MusculotendonsACM Transactions on Graphics10.1145/3550454.355549041:6(1-11)Online publication date: 30-Nov-2022
  • (2022)Simulation of Hand Anatomy Using Medical ImagingACM Transactions on Graphics10.1145/3550454.355548641:6(1-20)Online publication date: 30-Nov-2022
  • (2022)Local anatomically-constrained facial performance retargetingACM Transactions on Graphics10.1145/3528223.353011441:4(1-14)Online publication date: 22-Jul-2022
  • (2022)Dynamic optimal space partitioning for redirected walking in multi-user environmentACM Transactions on Graphics10.1145/3528223.353011341:4(1-14)Online publication date: 22-Jul-2022
  • (2022)NIMBLEACM Transactions on Graphics10.1145/3528223.353007941:4(1-16)Online publication date: 22-Jul-2022
  • (2022)A unified newton barrier method for multibody dynamicsACM Transactions on Graphics10.1145/3528223.353007641:4(1-14)Online publication date: 22-Jul-2022
  • (2022)Sparse ellipsometryACM Transactions on Graphics10.1145/3528223.353007541:4(1-14)Online publication date: 22-Jul-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media