Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2030112.2030127acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

iBAT: detecting anomalous taxi trajectories from GPS traces

Published: 17 September 2011 Publication History

Abstract

GPS-equipped taxis can be viewed as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden "facts" about the city dynamics and human behaviors. In this paper, we aim to discover anomalous driving patterns from taxi's GPS traces, targeting applications like automatically detecting taxi driving frauds or road network change in modern cites. To achieve the objective, firstly we group all the taxi trajectories crossing the same source destination cell-pair and represent each taxi trajectory as a sequence of symbols. Secondly, we propose an Isolation-Based Anomalous Trajectory (iBAT) detection method and verify with large scale taxi data that iBAT achieves remarkable performance (AUC>0.99, over 90% detection rate at false alarm rate of less than 2%). Finally, we demonstrate the potential of iBAT in enabling innovative applications by using it for taxi driving fraud detection and road network change detection.

Supplementary Material

JPG File (3-2.jpg)
MOV File (3-2.mov)

References

[1]
N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In Proc. KDD 2006, pages 504--509, 2006.
[2]
D. Aha. Lazy Learning. Springer, 1997.
[3]
F. Angiulli and F. Fassetti. Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets. ACM-TKDD, 3(1), 2009.
[4]
A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition. 30(7):1145--1159, 1997.
[5]
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. In Proc. SIGMOD 2000. pages 93--104, 2000.
[6]
Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu. Efficient anomaly monitoring over moving object trajectory streams. In Proc. KDD 2009, pages 159--168, 2009.
[7]
L. Cao and J. Krumm. From GPS traces to a routable road map. In Proc. GIS 2009, pages 3--12, 2009.
[8]
J. Froehlich and J. Krumm. Route prediction from trip observations. In Proc. SAE 2008, pages 1031--1038, 2008.
[9]
Y. Ge, H. Xiong, Z.-H. Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-Eye: Top-k evolving trajectory outlier detection. In Proc. CIKM 2010, pages 1733--1736, 2010.
[10]
M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual human mobility patterns. Nature, 453(5):779--782, 2008.
[11]
Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9-10):1641--1650, 2003.
[12]
E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications. VLDB Journal, 8(3-4):237--253, 2000.
[13]
J. Krumm and E. Horvitz. Predestination: Inferring destinations from partial trajectories. In Proc. Ubicomp 2006, pages 243--260, 2006.
[14]
J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In Proc. ICDE 2008, pages 140--149, 2008.
[15]
B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang. Hunting or waiting? discovering passenger-finding strategies from a large-scale real-world taxi dataset. In MUCS'11 in conjunction with PerCom 2011, pages 63--68, 2011.
[16]
X. Li, J. Han, S. Kim, and H. Gonzalez. ROAM: Rule- and motif-based anomaly detection in massive moving object data sets. In Proc. SDM 2007, pages 273--284, 2007.
[17]
X. Li, Z. Li, J. Han, and J.-G. Lee. Temporal outlier detection in vehicle traffic data. In Proc. ICDE 2009, pages 1319--1322, 2009.
[18]
L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring transportation routines. Artificial Intelligence, 171(5-6):311--331, 2007.
[19]
Z. Liao, Y. Yu, and B. Chen. Anomaly detection in GPS data based on visual analytics. In Proc. VAST 2010, pages 51--58, 2010.
[20]
F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In Proc. ICDM 2008, pages 413--422, 2008.
[21]
L. Liu, C. Andrisa, and C. Rattia. Uncovering cabdrivers' behaviour patterns from their digital traces. Computers, Environment and Urban Systems, 34(6):541--548, 2010.
[22]
D. J. Patterson, L. Liao, D. Fox, and H. A. Kautz. Inferring high-level behavior from low-level sensors. In Proc. Ubicomp 2003, pages 73--89, 2003.
[23]
S. Phithakkitnukoon, M. Veloso, C. Bento, A. Biderman, and C. Ratti. Taxi-aware map: Identifying and predicting vacant taxis in the city. In Proc. AmI 2010, pages 86--95, 2010.
[24]
G. Qi, X. Li, S. Li, G. Pan, and D. Zhang. Measuring social functions of city regions from large-scale taxi behaviors. In Proc. PerCom 2011, pages 21--25, 2010.
[25]
R. R. Sillito and R. B. Fisher. Semi-supervised learning for anomalous trajectory detection. In Proc. BMVC 2008, pages 1035--1044, 2008.
[26]
J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: Driving directions based on taxi trajectories. In Proc. GIS 2010, pages 99--108, 2010.
[27]
D. Zhang, B. Guo, and Z. Yu. The emergence of social and community intelligence. IEEE-Computer, July:21--28, 2011.
[28]
V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative filtering meets mobile recommendation: A user-centered approach. In Proc. AAAI 2010, 2010.
[29]
Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from GPS trajectories. In Proc. WWW 2009, pages 791--800, 2009.
[30]
B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell. Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In Proc. Ubicomp 2008, pages 322--331, 2008.
[31]
J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 38(2), 2006.

Cited By

View all
  • (2025)MDTRL: A Multi-Source Deep Trajectory Representation Learning for the Accurate and Fast Similarity QueryIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.351053426:2(2115-2128)Online publication date: Feb-2025
  • (2025)Learning to discover anomalous spatiotemporal trajectory via Open-world State Space modelKnowledge-Based Systems10.1016/j.knosys.2024.112918310(112918)Online publication date: Feb-2025
  • (2025)Smart real-time detection of risky roads using vehicles trajectories for intelligent transportationInternational Journal of Cognitive Computing in Engineering10.1016/j.ijcce.2025.01.0016(370-379)Online publication date: Dec-2025
  • Show More Cited By

Index Terms

  1. iBAT: detecting anomalous taxi trajectories from GPS traces

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UbiComp '11: Proceedings of the 13th international conference on Ubiquitous computing
    September 2011
    668 pages
    ISBN:9781450306300
    DOI:10.1145/2030112
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 September 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. anomalous trajectory detection
    2. gps trace
    3. isolation-based anomaly detection
    4. taxi

    Qualifiers

    • Research-article

    Conference

    Ubicomp '11

    Acceptance Rates

    Overall Acceptance Rate 764 of 2,912 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)62
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)MDTRL: A Multi-Source Deep Trajectory Representation Learning for the Accurate and Fast Similarity QueryIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.351053426:2(2115-2128)Online publication date: Feb-2025
    • (2025)Learning to discover anomalous spatiotemporal trajectory via Open-world State Space modelKnowledge-Based Systems10.1016/j.knosys.2024.112918310(112918)Online publication date: Feb-2025
    • (2025)Smart real-time detection of risky roads using vehicles trajectories for intelligent transportationInternational Journal of Cognitive Computing in Engineering10.1016/j.ijcce.2025.01.0016(370-379)Online publication date: Dec-2025
    • (2025)Applying Transformers for Anomaly Detection in Bus TrajectoriesIntelligent Systems10.1007/978-3-031-79029-4_12(169-184)Online publication date: 30-Jan-2025
    • (2024)Trajectory outlier detection method based on group divisionIntelligent Data Analysis10.3233/IDA-23738428:2(415-432)Online publication date: 1-Apr-2024
    • (2024)Trajectory Anomaly Detection with Language ModelsProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691257(208-219)Online publication date: 29-Oct-2024
    • (2024)RE-Trace: Re-identification of Modified GPS TrajectoriesACM Transactions on Spatial Algorithms and Systems10.1145/364368010:4(1-28)Online publication date: 5-Feb-2024
    • (2024)Anomalous Sub-Trajectory Detection With Graph Contrastive Self-Supervised LearningIEEE Transactions on Vehicular Technology10.1109/TVT.2024.338268573:7(9800-9811)Online publication date: Jul-2024
    • (2024)Micro-Macro Spatial-Temporal Graph-Based Encoder-Decoder for Map-Constrained Trajectory RecoveryIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.339615836:11(6574-6587)Online publication date: Nov-2024
    • (2024)Cybersecurity on Connected and Automated Transportation Systems: A SurveyIEEE Transactions on Intelligent Vehicles10.1109/TIV.2023.33267369:1(1382-1401)Online publication date: Jan-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media