Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering

Published: 12 December 2011 Publication History

Abstract

We introduce an algorithm for unsupervised co-segmentation of a set of shapes so as to reveal the semantic shape parts and establish their correspondence across the set. The input set may exhibit significant shape variability where the shapes do not admit proper spatial alignment and the corresponding parts in any pair of shapes may be geometrically dissimilar. Our algorithm can handle such challenging input sets since, first, we perform co-analysis in a descriptor space, where a combination of shape descriptors relates the parts independently of their pose, location, and cardinality. Secondly, we exploit a key enabling feature of the input set, namely, dissimilar parts may be "linked" through third-parties present in the set. The links are derived from the pairwise similarities between the parts' descriptors. To reveal such linkages, which may manifest themselves as anisotropic and non-linear structures in the descriptor space, we perform spectral clustering with the aid of diffusion maps. We show that with our approach, we are able to co-segment sets of shapes that possess significant variability, achieving results that are close to those of a supervised approach.

Supplementary Material

Supplemental material. (a126-sidi.zip)

References

[1]
Biasotti, S., Giorgi, D., Spagnuolo, M., and Falcidieno, B. 2008. Reeb graphs for shape analysis and applications. Theoretical Computer Science 392, 1--3, 5--22.
[2]
Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 11, 1222--1239.
[3]
Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, 1--12.
[4]
Coifman, R. R., and Lafon, S. 2006. Diffusion maps. Applied and Computational Harmonic Analysis 21, 1, 5--30.
[5]
Comaniciu, D., and Meer, P. 2002. Mean shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5, 603--619.
[6]
de Goes, F., Goldenstein, S., and Velho, L. 2008. A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Proc. SGP) 27, 5, 1349--1356.
[7]
Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, 1--8.
[8]
Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: an analyze-and-edit approach to shape manipulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, 1--10.
[9]
Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Computers & Graphics (Proc. of SMI) 33, 3, 262--269.
[10]
Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 30, 6.
[11]
Joulin, A., Bach, F., and J. Ponce. 2010. Discriminative clustering for image co-segmentation. In Proc. IEEE Conf. on CVPR, 1943--1950.
[12]
Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 3, 1--11.
[13]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. ACM Trans. on Graphics 23, 3, 623--629.
[14]
Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 4, 1--12.
[15]
Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G. 2005. Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In NIPS, 1--8.
[16]
Rother, C., Kolmogorov, V., Minka, T., and Blake, A. 2006. Cosegmentation of image pairs by histogram matching -- incorporating a global constraint into MRFs. In Proc. IEEE Conf. on CVPR, 993--1000.
[17]
Shamir, A., Shapira, L., and Cohen-Or, D. 2006. Mesh analysis using geodesic mean-shift. The Visual Computer 22, 99--108.
[18]
Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6, 1539--1556.
[19]
Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. 2009. Contextual part analogies in 3D objects. Int. J. Comput. Vision 89, 2--3, 309--326.
[20]
Simari, P., Nowrouzezahrai, D., Kalogerakis, E., and Singh, K. 2009. Multi-objective shape segmentation and labeling. Computer Graphics Forum (Proc. SGP) 28, 5, 1415--1425.
[21]
van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2010. A survey on shape correspondence. In Proc. Eurographics State-of-the-Art Report, 1--23.
[22]
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for part correspondence. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2, 553--562.
[23]
Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2, 287--296.
[24]
Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, 1--9.
[25]
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 29, 5, 1--9.
[26]
Zhang, H., van Kaick, O., and Dyer, R. 2010. Spectral mesh processing. Computer Graphics Forum 29, 6, 1865--1894.

Cited By

View all
  • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 12-Mar-2024
  • (2024)3D Shape Segmentation via Attentive Nonuniform DownsamplingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.343209534:12(12184-12196)Online publication date: Dec-2024
  • (2024)TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01847(19531-19540)Online publication date: 16-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 6
December 2011
678 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2070781
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011
Published in TOG Volume 30, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. co-segmentation
  2. diffusion maps
  3. shape correspondence
  4. spectral clustering

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 12-Mar-2024
  • (2024)3D Shape Segmentation via Attentive Nonuniform DownsamplingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.343209534:12(12184-12196)Online publication date: Dec-2024
  • (2024)TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01847(19531-19540)Online publication date: 16-Jun-2024
  • (2024)Variational autoencoders for 3D data processingArtificial Intelligence Review10.1007/s10462-023-10687-x57:2Online publication date: 8-Feb-2024
  • (2023)HAL3D: Hierarchical Active Learning for Fine-Grained 3D Part Labeling2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00086(865-875)Online publication date: 1-Oct-2023
  • (2023)An Efficient Appraoch based Representation Learning and CRF Models for Unsupervised 3D Shape Co-segmentation2023 7th IEEE Congress on Information Science and Technology (CiSt)10.1109/CiSt56084.2023.10409928(245-250)Online publication date: 16-Dec-2023
  • (2023)DA Wand: Distortion-Aware Selection Using Neural Mesh Parameterization2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.01606(16739-16749)Online publication date: Jun-2023
  • (2023)SCMS-Net: Self-Supervised Clustering-Based 3D Meshes Segmentation NetworkComputer-Aided Design10.1016/j.cad.2023.103512160(103512)Online publication date: Jul-2023
  • (2022)Learning on 3D Meshes With Laplacian Encoding and PoolingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.301444928:2(1317-1327)Online publication date: 1-Feb-2022
  • (2022)3D Shape Segmentation Using Soft Density Peak Clustering and Semi-Supervised LearningComputer-Aided Design10.1016/j.cad.2021.103181145(103181)Online publication date: Apr-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media