Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fluid simulation using Laplacian eigenfunctions

Published: 02 February 2012 Publication History

Abstract

We present an algorithm for the simulation of incompressible fluid phenomena that is computationally efficient and leads to visually convincing simulations with far fewer degrees of freedom than existing approaches. Rather than using an Eulerian grid or Lagrangian elements, we represent vorticity and velocity using a basis of global functions defined over the entire simulation domain. We show that choosing Laplacian eigenfunctions for this basis provides benefits, including correspondence with spatial scales of vorticity and precise energy control at each scale. We perform Galerkin projection of the Navier-Stokes equations to derive a time evolution equation in the space of basis coefficients. Our method admits closed-form solutions on simple domains but can also be implemented efficiently on arbitrary meshes.

Supplementary Material

JPG File (tp228_12.jpg)
witt (witt.zip)
Supplemental videos, for, Fluid simulation using laplacian eigenfunctions
MP4 File (tp228_12.mp4)

References

[1]
Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In ACM SIGGRAPH 2007 Papers. ACM, New York.
[2]
Agrachev, A. A. and Sarychev, A. V. 2005. Navier-Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mechan. 7, 1, 108--152.
[3]
Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'06). Eurographics Association, 25--32.
[4]
Arnold, V. I. 1966. Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16.
[5]
Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In ACM SIGGRAPH 2009 Papers. ACM, New York, 53:1--53:9.
[6]
Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-Noise for procedural fluid flow. In ACM SIGGRAPH 2007 Papers. ACM, New York.
[7]
Cheng, D. K. 1999. Field and Wave Electromagnetics. Addison-Wesley, Reading, MA.
[8]
de Witt, T. 2010. Fluid simulation in bases of Laplacian eigenfunctions. M.S. thesis, University of Toronto, Toronto, ON, Canada.
[9]
Desbrun, M. and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation'96. Springer, 61--76.
[10]
Desbrun, M., Kanso, E., and Tong, Y. 2005. Discrete differential forms for computational modeling. In ACM SIGGRAPH 2005 Courses. ACM, New York.
[11]
Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26.
[12]
Fattal, R. and Lischinski, D. 2004. Target-driven smoke animation. In ACM SIGGRAPH 2004 Papers. ACM, New York, 441--448.
[13]
Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 15--22.
[14]
Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 471--483.
[15]
Gamito, M. N., Lopes, P. F., and Gomes, M. R. 1995. Two-Dimensional simulation of gaseous phenomena using vortex particles. In Proceedings of the 6th Eurographics Workshop on Computer Animation and Simulation. Springer, 3--15.
[16]
Gupta, M. and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). Eurographics Association, 17--25.
[17]
Gustafson, K. and Hartman, R. 1983. Divergence-Free bases for finite element schemes in hydrodynamics. SIAM J. Numer. Anal. 20, 697--721.
[18]
Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 114:1--114:9.
[19]
Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers. ACM, New York, 457--462.
[20]
Marsden, J. E. and Ratiu, T. S. 1999. Introduction to Mechanics and Symmetry, 2nd ed. Texts in Applied Mathematics. No. 17, Springer, New York.
[21]
McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. In ACM SIGGRAPH 2004 Papers. ACM, New York, 449--456.
[22]
Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving integrators for fluid animation. In ACM SIGGRAPH 2009 Papers. ACM, New York, 38:1--38:8.
[23]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 154--159.
[24]
Orszag, S. A. 1969. Numerical methods for the simulation of turbulence. Phys. Fluids 12, 250--257.
[25]
Orszag, S. A. and Patterson, G. 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76--79.
[26]
Park, S. I. and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM, New York, 261--270.
[27]
Poincaré, H. 1901. Sur une forme nouvelle des équations de la méchanique. C.R. Acad. Sci. 132, 369--371.
[28]
Rogallo, R., Moin, P., and Reynolds, W. 1981. Numerical experiments in homogeneous turbulence. NASA TM-81315.
[29]
Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35, 350--371.
[30]
Silberman, I. 1954. Planetary waves in the atmosphere. J. Meteor. 11, 27--34.
[31]
Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York, 121--128.
[32]
Stam, J. 2002. A simple fluid solver based on the FFT. J. Graph. Tools 6, 43--52.
[33]
Stam, J. and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 369--376.
[34]
Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In ACM SIGGRAPH 2006 Papers. ACM, New York, 826--834.
[35]
Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. In ACM SIGGRAPH 2003 Papers. ACM, New York, 716--723.
[36]
Twigg, C. D. and James, D. L. 2008. Backward steps in rigid body simulation. In ACM SIGGRAPH 2008 Papers. ACM, New York, 25:1--25:10.
[37]
Weissmann, S. and Pinkall, U. 2010. Filament-Based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 115:1--115:12.
[38]
Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. In ACM SIGGRAPH 2009 Papers. ACM, New York, 39:1--39:8.
[39]
Yudovich, V. I. 1963. Non-Stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3, 6, 1407--1456.
[40]
Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers. ACM, New York, 965--972.

Cited By

View all

Index Terms

  1. Fluid simulation using Laplacian eigenfunctions

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 1
    January 2012
    149 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2077341
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 February 2012
    Accepted: 01 September 2011
    Received: 01 July 2011
    Published in TOG Volume 31, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Animation
    2. Laplacian eigenfunctions
    3. based animation
    4. fluid
    5. fluid simulation
    6. geometric mechanics
    7. physically
    8. smoke

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)58
    • Downloads (Last 6 weeks)10
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Layer-Based Simulation for Three-Dimensional Fluid Flow in Spherical CoordinatesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.336052131:2(1435-1447)Online publication date: 1-Feb-2025
    • (2024)Fluid Control with Laplacian EigenfunctionsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657468(1-11)Online publication date: 13-Jul-2024
    • (2024)Neural Monte Carlo Fluid SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657438(1-11)Online publication date: 13-Jul-2024
    • (2024)Wall-bounded flow simulation on vortex dynamicsComputers & Graphics10.1016/j.cag.2024.103990122(103990)Online publication date: Aug-2024
    • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
    • (2023)PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid SimulationACM Transactions on Graphics10.1145/359214642:4(1-13)Online publication date: 26-Jul-2023
    • (2023)Spectral Coarsening with Hodge LaplaciansACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591544(1-11)Online publication date: 23-Jul-2023
    • (2023)Physics‐Informed Neural Corrector for Deformation‐based Fluid ControlComputer Graphics Forum10.1111/cgf.1475142:2(161-173)Online publication date: 23-May-2023
    • (2023)Towards real-time fluid dynamics simulation: a data-driven NN-MPS method and its implementationMathematical and Computer Modelling of Dynamical Systems10.1080/13873954.2023.218483529:1(95-115)Online publication date: 6-Mar-2023
    • (2022)Learning to accelerate partial differential equations via latent global evolutionProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3600433(2240-2253)Online publication date: 28-Nov-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media