Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Globally optimal direction fields

Published: 21 July 2013 Publication History

Abstract

We present a method for constructing smooth n-direction fields (line fields, cross fields, etc.) on surfaces that is an order of magnitude faster than state-of-the-art methods, while still producing fields of equal or better quality. Fields produced by the method are globally optimal in the sense that they minimize a simple, well-defined quadratic smoothness energy over all possible configurations of singularities (number, location, and index). The method is fully automatic and can optionally produce fields aligned with a given guidance field such as principal curvature directions. Computationally the smoothest field is found via a sparse eigenvalue problem involving a matrix similar to the cotan-Laplacian. When a guidance field is present, finding the optimal field amounts to solving a single linear system.

Supplementary Material

ZIP File (a59-knoppel.zip)
Supplemental material.
MP4 File (tp174.mp4)

References

[1]
Ahlfors, L. V. 1966. Complex Analysis, 2nd Ed. McGraw-Hill.
[2]
Ben-Chen, M., Butscher A., Solomon, J., and Guibas, L. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Comp. Graph. Forum 29, 5, 1701--1711.
[3]
Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3.
[4]
Bommes, D., Zimmer, H., and Kobbelt, L. 2012. Practical Mixed-Integer Optimization for Geometry Processing. In Proc. 7th Int. Conf. Curves & Surfaces, 193--206. Project page: http://www.graphics.rwth-aachen.de/software/comiso.
[5]
Chen, Y., Davis, T. A., Hager, W W., and Rajamanickam, S. 2009. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3, 22:1--22:14.
[6]
Cohen-Steiner D., and Morvan, J.-M. 2003. Restricted Delaunay Triangulations and Normal Cycle. In Proc. Symp. Comp. Geom., 312--321.
[7]
Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial Connections on Discrete Surfaces. Comp. Graph. Forum 29, 5, 1525--1533.
[8]
Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Comp. Graph. Forum 21, 3, 209--218.
[9]
Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.
[10]
Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3.
[11]
Gil, A., Segura, J., and Temme, N. M. 2007. Numerical Methods for Special Functions. SIAM.
[12]
Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., 127--137.
[13]
Hertzmann, A., and Zorin, D. 2000. Illustrating Smooth Surfaces. In Proc. ACM/SIGGRAPH Conf., 517--526.
[14]
Kälberer F., Nieser, M., and Polthier, K. 2007. QuadCover - Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3, 375--384.
[15]
Kass, M., and Witkin, A. 1987. Analyzing Oriented Patterns. Comp. Vis., Graph., Im. Proc. 37, 3, 362--385.
[16]
Lefebvre, S., and Hoppe, H. 2006. Appearance-space Texture Synthesis. ACM Trans. Graph. 25, 3, 541--548.
[17]
Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362--371.
[18]
Ling, C., Nie, J., Qi, L., and Ye, Y. 2009. Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations. SIAM J. on Opt. 20, 3, 1286--1310.
[19]
MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.
[20]
Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral Conformal Parameterization. Comp. Graph. Forum 27, 5, 1487--1494.
[21]
Napier, T, and Ramachandran, M. 2011. An Introduction to Riemann Surfaces. Birkhäuser.
[22]
Nieser M., Palacios, J., Polthier, K, and Zhang, E. 2012. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Trans. Vis. Comp. Graph. 18, 6, 865--878.
[23]
Palacios, J., and Zhang, E. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3.
[24]
Pinkall, U., and Polthier, K. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experiment. Math. 2, 1, 15--36.
[25]
Polthier, K., and Schmies, M. 1998. Straightest Geodesies on Polyhedral Surfaces. In Mathematical Visualization: Algorithms, Applications and Numerics, H.-C. Hege and K. Polthier, Eds. Springer Verlag, 135--152.
[26]
Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4, 1460--1485.
[27]
Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2, 10:1--10:13.
[28]
Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry Aware Direction Field Processing. ACM Trans. Graph. 29, 1.
[29]
Wirtinger, W. 1927. Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97, 1, 357--375.
[30]
Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4, 1294--1326.

Cited By

View all
  • (2024)An intrinsic vector heat networkProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692654(14638-14650)Online publication date: 21-Jul-2024
  • (2024)Smooth Bijective Projection in a High-order ShellACM Transactions on Graphics10.1145/365820743:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Lifting Directional Fields to Minimal SectionsACM Transactions on Graphics10.1145/365819843:4(1-20)Online publication date: 19-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 4
July 2013
1215 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2461912
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2013
Published in TOG Volume 32, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. curvature lines
  2. digital geometry processing
  3. direction fields
  4. discrete differential geometry
  5. singularities

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)107
  • Downloads (Last 6 weeks)18
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An intrinsic vector heat networkProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692654(14638-14650)Online publication date: 21-Jul-2024
  • (2024)Smooth Bijective Projection in a High-order ShellACM Transactions on Graphics10.1145/365820743:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Lifting Directional Fields to Minimal SectionsACM Transactions on Graphics10.1145/365819843:4(1-20)Online publication date: 19-Jul-2024
  • (2024)Curvature-Driven Conformal DeformationsACM Transactions on Graphics10.1145/365814543:4(1-16)Online publication date: 19-Jul-2024
  • (2024)Anisotropy and Cross FieldsComputer Graphics Forum10.1111/cgf.1513243:5Online publication date: 5-Aug-2024
  • (2024)Practical Integer-Constrained Cone Construction for Conformal ParameterizationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328730330:8(5227-5239)Online publication date: Aug-2024
  • (2024)Pose and Path Planning for Industrial Robot Surface Machining Based on Direction FieldsIEEE Robotics and Automation Letters10.1109/LRA.2024.34745219:11(10455-10462)Online publication date: Nov-2024
  • (2024)Single Mesh Diffusion Models with Field Latents for Texture Generation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00760(7953-7963)Online publication date: 16-Jun-2024
  • (2024)Extraction of surface quad layouts from quad layout immersions: application to an isogeometric model of car crashEngineering with Computers10.1007/s00366-024-02007-w40:6(3683-3716)Online publication date: 1-Dec-2024
  • (2024)Integrable Cross-Field Generation Based on Imposed Singularity Configuration—The 2D Manifold CaseSIAM International Meshing Roundtable 202310.1007/978-3-031-40594-5_16(343-369)Online publication date: 21-Mar-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media