Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2482513.2482965acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article

Moving steganography and steganalysis from the laboratory into the real world

Published: 17 June 2013 Publication History

Abstract

There has been an explosion of academic literature on steganography and steganalysis in the past two decades. With a few exceptions, such papers address abstractions of the hiding and detection problems, which arguably have become disconnected from the real world. Most published results, including by the authors of this paper, apply "in laboratory conditions" and some are heavily hedged by assumptions and caveats; significant challenges remain unsolved in order to implement good steganography and steganalysis in practice. This position paper sets out some of the important questions which have been left unanswered, as well as highlighting some that have already been addressed successfully, for steganography and steganalysis to be used in the real world.

References

[1]
Documents reveal Al Qaeda's plans for seizing cruise ships, carnage in europe. CNN, April 2012. http://edition.cnn.com/2012/04/30/world/al-qaeda-documents-future/index.html, accessed February 2012.
[2]
Feature extractors for steganalysis. http://dde.binghamton.edu/download/feature_extractors/, accessed February 2012.
[3]
MIT Technology Review: Steganography. http://www.technologyreview.com/search/site/steganography/, accessed February 2012.
[4]
Russian spies' use of steganography is just the beginning. MIT Technology Review, July 2010. http://www.technologyreview.com/view/419833/russian-spies-use-of-steganography-is-just-the- beginning/, accessed February 2012.
[5]
D. Alperovitch. Revealed: Operation Shady RAT. McAfee White Paper, 2011. http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf, accessed February 2012.
[6]
V. Anantharam and S. Verdu. Bits through queues. IEEE Trans. Inf. Theory, 42(1):4--18, 1996.
[7]
R. Anderson. Stretching the limits of steganography. In Information Hiding, 1st International Workshop, volume 1174 of LNCS, pages 39--48. Springer-Verlag, 1996.
[8]
R. J. Anderson and F. A. P. Petitcolas. On the limits of steganography. IEEE J. Sel. Areas Commun., 16(4):474--481, 1998.
[9]
A. Aviv, G. Shah, and M. Blaze. Steganographic timing channels. Technical report, University of Pennsylvania, 2011.
[10]
A. Baliga and J. Kilian. On covert collaboration. In Proceedings of the 9th ACM Multimedia & Security Workshop, pages 25--34, 2007.
[11]
G. Bell and Y.-K. Lee. A method for automatic identification of signatures of steganography software. IEEE Trans. Inf. Forensics Security, 5(2):354--358, 2010.
[12]
V. Berk, A. Giana, G. Cybenko, and N. Hanover. Detection of covert channel encoding in network packet delays, 2005.
[13]
R. Böhme. Weighted stego-image steganalysis for JPEG covers. In Information Hiding, 10th International Workshop, volume 5284 of LNCS, pages 178--194. Springer-Verlag, 2007.
[14]
R. Böhme. Advanced Statistical Steganalysis. Springer-Verlag, 2010.
[15]
U. Budhia, D. Kundur, and T. Zourntos. Digital video steganalysis exploiting statistical visibility in the temporal domain. IEEE Trans. Inf. Forensics Security, 1(4):502--516, 2006.
[16]
S. Cabuk, C. E. Brodley, and C. Shields. Ip covert timing channels: design and detection. In Proceedings of the 11th ACM conference on Computer and communications security, pages 178--187. ACM, 2004.
[17]
C. Cachin. An information-theoretic model for steganography. In Information Hiding, 2nd International Workshop, volume 1525 of LNCS, pages 306--318. Springer-Verlag, 1998.
[18]
R. Cogranne and F. Retraint. An asymptotically uniformly most powerful test for LSB matching detection. IEEE Trans. Inf. Forensics Security, 8(3):464--476, 2013.
[19]
R. Cogranne, C. Zitzmann, L. Fillatre, F. Retraint, I. Nikiforov, and P. Cornu. Statistical decision by using quantized observations. In International Symposium on Information Theory, pages 1135--1139. IEEE, 2011.
[20]
R. Cogranne, C. Zitzmann, F. Retraint, I. Nikiforov, P. Cornu, and L. Fillatre. A locally adapted model of natural images for almost optimal hidden data detection. IEEE Trans. Image Process., 2013. (to appear).
[21]
R. Crandall. Some notes on steganography. Steganography Mailing List, 1998. available from http://os.inf.tu-dresden.de/ westfeld/ crandall.pdf.
[22]
S. Craver. On public-key steganography in the presence of an active warden. In Information Hiding, 2nd International Workshop, volume 1525, pages 355--368, 1998.
[23]
S. Craver, E. Li, J. Yu, and I. Atalki. A supraliminal channel in a videoconferencing application. In Information Hiding, 10th International Workshop, volume 5284 of LNCS, pages 283--293. Springer-Verlag, 2008.
[24]
D. E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng., SE-13(2):222--232, 1987.
[25]
M. Ettinger. Steganalysis and game equilibria. In Information Hiding, 2nd International Workshop, volume 1525 of LNCS, pages 319--328. Springer-Verlag, 1998.
[26]
T. Filler and J. Fridrich. Fisher information determines capacity of ε-secure steganography. In Information Hiding, 11th International Conference, volume 5806 of LNCS, pages 31--47. Springer-Verlag, 2009.
[27]
T. Filler and J. Fridrich. Gibbs construction in steganography. IEEE Trans. Inf. Forensics Security, 5(4):705--720, 2010.
[28]
T. Filler and J. Fridrich. Design of adaptive steganographic schemes for digital images. In Media Watermarking, Security and Forensics XIII, volume 7880 of Proc. SPIE, pages OF 1--14, 2011.
[29]
T. Filler, J. Judas, and J. Fridrich. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Security, 6(3):920--935, 2011.
[30]
T. Filler, A. D. Ker, and J. Fridrich. The Square Root Law of steganographic capacity for Markov covers. In Security and Forensics of Multimedia XI, volume 7254 of Proc. SPIE, pages 08 1--11, 2009.
[31]
E. Franz, A. Jerichow, S. Möller, A. Pfitzmann, and I. Stierand. Computer based steganography: How it works and why therefore any restrictions on cryptography are nonsense, at best. In Information Hiding, 1st International Workshop, volume 1174 of LNCS, pages 7--21. Springer-Verlag, 1996.
[32]
J. Fridrich. Effect of cover quantization on steganographic fisher information. IEEE Trans. Inf. Forensics Security, 8(2):361--372, 2013.
[33]
J. Fridrich and M. Goljan. On estimation of secret message length in LSB steganography in spatial domain. In Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306 of Proc. SPIE, pages 23--34, 2004.
[34]
J. Fridrich, M. Goljan, and D. Soukal. Searching for the stego key. In Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306, pages 70--82, 2004.
[35]
J. Fridrich and J. Kodovský. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Security, 7(3):868--882, 2011.
[36]
J. Fridrich, T. Pevný, and J. Kodovský. Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities. In Proceedings of the 9th ACM Multimedia & Security Workshop, pages 3--14, 2007.
[37]
J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging through TCP timestamps. In Privacy Enhancing Technologies, volume 2482 of LNCS, pages 194--208. Springer-Verlag, 2002.
[38]
T. Gloe. Forensic analysis of ordered data structures on the example of JPEG files. In Information Forensics and Security, 4th International Workshop, pages 139--144. IEEE, 2012.
[39]
L. Guo, J. Ni, and Y.-Q. Shi. An efficient JPEG steganographic scheme using uniform embedding. In Information Forensics and Security, 4th International Workshop, pages 169--174. IEEE, 2012.
[40]
V. Holub and J. Fridrich. Designing steganographic distortion using directional filters. In Information Forensics and Security, 4th International Workshop, pages 234--239. IEEE, 2012.
[41]
N. J. Hopper, J. Langford, and L. von Ahn. Provably secure steganography. In Advances in Cryptology, CRYPTO '02, volume 2442 of LNCS, pages 77--92. Springer-Verlag, 2002.
[42]
X. Hou, T. Zhang, G. Xiong, and B. Wan. Forensics aided steganalysis of heterogeneous bitmap images with different compression history. In Multimedia Information Networking and Security, 4th International Conference, pages 874--877, 2012.
[43]
F. Huang, J. Huang, and Y.-Q. Shi. New channel selection rule for JPEG steganography. IEEE Trans. Inf. Forensics Security, 7(4):1181--1191, 2012.
[44]
C. Hundt, M. Liskiewicz, and U. Wölfel. Provably secure steganography and the complexity of sampling. In Algorithms and Computation, volume 4317 of LNCS, pages 754--763. Springer-Verlag, 2006.
[45]
B. Johnson, P. Schöttle, and R. Böhme. Where to hide the bits? In J. Grossklags and J. Walrand, editors, Decision and Game Theory for Security, volume 7638 of LNCS, pages 1--17. Springer-Verlag, 2012.
[46]
D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet. Scribner, revised edition, 1996.
[47]
K. Kancherla and S. Mukkamala. Video steganalysis using motion estimation. In International Joint Conference on Neural Networks, pages 1510--1515. IEEE, 2009.
[48]
A. D. Ker. Batch steganography and pooled steganalysis. In Information Hiding, 8th International Workshop, volume 4437 of LNCS, pages 265--281. Springer-Verlag, 2006.
[49]
A. D. Ker. Batch steganography and the threshold game. In Security, Steganography, and Watermarking of of Multimedia Contents IX, volume 6505 of Proc. SPIE, pages 04 1--13, 2007.
[50]
A. D. Ker. A capacity result for batch steganography. IEEE Signal Process. Lett., 14(8):525--528, 2007.
[51]
A. D. Ker. Locating steganographic payload via ws residuals. In Proceedings of the 10th ACM Multimedia & Security Workshop, pages 27--32. ACM, 2008.
[52]
A. D. Ker. Steganographic strategies for a square distortion function. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, volume 6819 of Proc. SPIE, pages 04 1--13, 2008.
[53]
A. D. Ker. Estimating the information theoretic optimal stego noise. In Digital Watermarking, 8th International Workshop, volume 5703 of LNCS, pages 184--198. Springer-Verlag, 2009.
[54]
A. D. Ker and R. Böhme. Revisiting weighted stego-image steganalysis. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, volume 6819 of Proc. SPIE, pages 05 1--17, 2008.
[55]
A. D. Ker and T. Pevný. Batch steganography in the real world. In Proceedings of the 14th ACM Multimedia & Security Workshop, pages 1--10. ACM, 2012.
[56]
A. D. Ker and T. Pevný. Identifying a steganographer in realistic and heterogeneous data sets. In Media Watermarking, Security, and Forensics XIV, volume 8303 of Proc. SPIE, pages 0N 1--13, 2012.
[57]
A. D. Ker, T. Pevný, J. Kodovský, and J. Fridrich. The Square Root Law of steganographic capacity. In Proceedings of the 10th ACM Multimedia & Security Workshop, pages 107--116, 2008.
[58]
Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique for minimal distortion steganography. In Information Hiding, 8th International Workshop, volume 4437 of LNCS, pages 314--327. Springer-Verlag, 2006.
[59]
Kodovský and J. Fridrich. Quantitative steganalysis using rich models. In Media Watermarking, Security, and Forensics 2013, Proc. SPIE, 2013. (to appear).
[60]
J. Kodovský. Steganalysis of Digital Images Using Rich Image Representations and Ensemble Classifiers. PhD thesis, Electrical and Computer Engineering Department, 2012.
[61]
J. Kodovský and J. Fridrich. On completeness of feature spaces in blind steganalysis. In Proceedings of the 10th ACM Multimedia & Security Workshop, pages 123--132, 2008.
[62]
J. Kodovský and J. Fridrich. Steganalysis in high dimensions: Fusing classifiers built on random subspaces. In Media Watermarking, Security and Forensics XIII, volume 7880, pages OL 1--13, 2011.
[63]
J. Kodovský and J. Fridrich. Steganalysis of JPEG images using rich models. In Media Watermarking, Security, and Forensics 2012, volume 8303 of Proc. SPIE, pages 0A 1--13, 2012.
[64]
J. Kodovský and J. Fridrich. Steganalysis in resized images. In International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2013. (to appear).
[65]
J. Kodovský, J. Fridrich, and V. Holub. On dangers of overtraining steganography to incomplete cover model. In Proceedings of the 13th ACM Multimedia & Security Workshop, pages 69--76, 2011.
[66]
J. Kodovský, J. Fridrich, and V. Holub. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Security, 7(2):432--444, 2012.
[67]
S. Köpsell and U. Hillig. How to achieve blocking resistance for existing systems enabling anonymous web surfing. In Privacy in the Electronic Society, ACM Workshop, pages 47--58. ACM, 2004.
[68]
S. Kraut and L. L. Scharf. The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Sig. Proc., 47(9):2538--2541, 1999.
[69]
S. Kullback. Information Theory and Statistics. Dover, 1968.
[70]
E. Lehmann and J. Romano. Testing Statistical Hypotheses. Springer, 3rd edition, 2005.
[71]
E. Li and S. Craver. A square-root law for active wardens. In Proceedings of the 13th ACM Multimedia & Security Workshop, pages 87--92. ACM, 2011.
[72]
I. Lubenko and A. D. Ker. Going from small to large data sets in steganalysis. In Media Watermarking, Security, and Forensics 2012, volume 8303 of Proc. SPIE, pages OM 1--10, 2012.
[73]
S. Lyu and H. Farid. Steganalysis using higher-order image statistics. IEEE Trans. Inf. Forensics Security, 1(1):111--119, 2006.
[74]
S. J. Murdoch and S. Lewis. Embedding covert channels in TCP/IP. In Information Hiding, 7th International Workshop, volume 3727 of LNCS, pages 247--261. Springer-Verlag, 2005.
[75]
A. Orsdemir, O. Altun, G. Sharma, and M. Bocko. Steganalysis-aware steganography: Statistical indistinguishability despite high distortion. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, volume 6819 of Proc. SPIE, pages 15 1--19, 2008.
[76]
T. Pevný. Kernel Methods in Steganalysis. PhD thesis, Binghamton University, SUNY, 2008.
[77]
T. Pevný. Detecting messages of unknown length. In Media Watermarking, Security and Forensics XIII, volume 7880 of Proc. SPIE, pages OT 1--12, 2011.
[78]
T. Pevný, P. Bas, and J. Fridrich. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Security, 5(2):215--224, 2010.
[79]
T. Pevný, T. Filler, and P. Bas. Using high-dimensional image models to perform highly undetectable steganography. In Information Hiding, 12th International Conference, volume 6387 of LNCS, pages 161--177. Springer-Verlag, 2010.
[80]
T. Pevný and J. Fridrich. Detection of double-compression in JPEG images for applications in steganography. IEEE Trans. Inf. Forensics Security, 3(2):247--258, 2008.
[81]
T. Pevný and J. Fridrich. Multiclass detector of current steganographic methods for JPEG format. IEEE Trans. Inf. Forensics Security, 3(4):635--650, 2008.
[82]
T. Pevný and J. Fridrich. Novelty detection in blind steganalysis. In Proceedings of the 10th ACM Multimedia & Security Workshop, pages 167--176, 2008.
[83]
T. Pevny, J. Fridrich, and A. D. Ker. From blind to quantitative steganalysis. IEEE Trans. Inf. Forensics Security, 7(2):445--454, 2012.
[84]
N. Provos and P. Honeyman. Detecting steganographic content on the internet. Technical Report CITI Technical Report 01--11, University of Michigan, 2001.
[85]
L. Reyzin and S. Russell. Simple stateless steganography. IACR Eprint archive, 2003. http://eprint.iacr.org/2003/093.
[86]
V. Sachnev, H. J. Kim, and R. Zhang. Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding. In Proceedings of the 11th ACM Multimedia & Security Workshop, pages 131--140, 2009.
[87]
U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In Computer Vision and Pattern Recognition, pages 1751--1758. IEEE, 2010.
[88]
B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.
[89]
P. Schöttle and R. Böhme. A game-theoretic approach to content-adaptive steganography. In Information Hiding, 14th International Conference, volume 7692 of LNCS, pages 125--141. Springer-Verlag, 2012.
[90]
C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Trans. Inf. Theory, 51(8):3806--3819, 2005.
[91]
C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv. Rec., 4:142--163, 1959.
[92]
G. J. Simmons. The prisoner's problem and the subliminal channel. In Advances in Cryptology, CRYPTO '83, pages 51--67. Plenum Press, 1983.
[93]
J. Spolsky. Joel on Software: Selected Essays. APress, 2004.
[94]
J. Sun and M. F. Tappen. Learning non-local range Markov random field for image restoration. In Computer Vision and Pattern Recognition, pages 2745--2752. IEEE, 2011.
[95]
T. H. Thai, F. Retraint, and R. Cogranne. Statistical model of natural images. In Proceedings IEEE, International Conference on Image Processing, ICIP 2012, pages 2525--2528. IEEE, 2012.
[96]
V. N. Vapnik. Statistical learning theory. Wiley, 1998.
[97]
S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun. A stochastic approach to content adaptive digital image watermarking. In Information Hiding, 3rd International Workshop, volume 1768 of LNCS, pages 211--236. Springer-Verlag, 2000.
[98]
A. B. Wagner and V. Anantharam. Information theory of covert timing channels. In Proceedings of the 2005 NATO/ASI Workshop on Network Security and Intrusion Detection, pages 292--296. IOS Press, 2008.
[99]
A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Stat., 16(2):117--186, 1945.
[100]
C. Wang and J. Ni. An efficient JPEG steganographic scheme based on the block--entropy of DCT coefficents. In International Conference on Acoustics, Speech, and Signal Processing, pages 1785--1788. IEEE, 2012.
[101]
Y. Wang and P. Moulin. Perfectly secure steganography: Capacity, error exponents, and code constructions. IEEE Trans. Inf. Theory, 55(6):2706--2722, 2008.
[102]
Y. Weiss and W. T. Freeman. What makes a good model of natural images? In Computer Vision and Pattern Recognition, pages 1--8. IEEE, 2007.
[103]
A. Westfeld. Steganalysis in the presence of weak cryptography and encoding. In Digital Watermarking, 5th International Workshop, volume 4283 of LNCS, pages 19--34. Springer-Verlag, 2006.
[104]
L. Yao, X. Zi, L. Pan, and J. Li. A study of on/off timing channel based on packet delay distribution. Computers & Security, 28(8):785--794, 2009.
[105]
S. Yuksel, J. Wilson, and P. Gader. Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst., 23(8):1177--1193, 2012.
[106]
C. Zitzmann, R. Cogranne, L. Fillatre, I. Nikiforov, F. Retraint, and P. Cornu. Hidden information detection based on quantized Laplacian distribution. In International Conference on Acoustics, Speech, and Signal Processing, pages 1793--1796. IEEE, 2012.
[107]
C. Zitzmann, R. Cogranne, F. Retraint, I. Nikiforov, L. Fillatre, and P. Cornu. Statistical decision methods in hidden information detection. In Information Hiding, 13th International Conference, LNCS, pages 163--177. Springer-Verlag, 2011.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IH&MMSec '13: Proceedings of the first ACM workshop on Information hiding and multimedia security
June 2013
242 pages
ISBN:9781450320818
DOI:10.1145/2482513
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 June 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. game theory
  2. minimal distortion
  3. optimal detection
  4. security models
  5. steganalysis
  6. steganography

Qualifiers

  • Research-article

Conference

IH&MMSec '13
Sponsor:

Acceptance Rates

IH&MMSec '13 Paper Acceptance Rate 27 of 74 submissions, 36%;
Overall Acceptance Rate 128 of 318 submissions, 40%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)59
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Pooled Steganalysis via Model DiscrepancyMathematics10.3390/math1204055212:4(552)Online publication date: 11-Feb-2024
  • (2024)Aletheia: an open-source toolbox for steganalysisJournal of Open Source Software10.21105/joss.059829:93(5982)Online publication date: Jan-2024
  • (2024)Cover-source mismatch in steganalysis: systematic reviewEURASIP Journal on Information Security10.1186/s13635-024-00171-62024:1Online publication date: 12-Aug-2024
  • (2024)Single-image steganalysis in real-world scenarios based on classifier inconsistency detectionProceedings of the 19th International Conference on Availability, Reliability and Security10.1145/3664476.3670911(1-6)Online publication date: 30-Jul-2024
  • (2024)Are Deepfakes a Game-changer in Digital Images Steganography Leveraging the Cover-Source-Mismatch?Proceedings of the 19th International Conference on Availability, Reliability and Security10.1145/3664476.3670893(1-9)Online publication date: 30-Jul-2024
  • (2024)Exploring Diffusion-Inspired Pixel Predictors for WS SteganalysisProceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security10.1145/3658664.3659645(75-86)Online publication date: 24-Jun-2024
  • (2024)Leveraging Generative Models for Covert Messaging: Challenges and Tradeoffs for "Dead-Drop" DeploymentsProceedings of the Fourteenth ACM Conference on Data and Application Security and Privacy10.1145/3626232.3653264(67-78)Online publication date: 19-Jun-2024
  • (2024)AISM: An Adaptable Image Steganography Model With User CustomizationIEEE Transactions on Services Computing10.1109/TSC.2024.339591717:5(1955-1968)Online publication date: Sep-2024
  • (2024)Efficient Audio Steganography Using Generalized Audio Intrinsic Energy With Micro-Amplitude Modification SuppressionIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.341726819(6559-6572)Online publication date: 2024
  • (2024)Diverse Batch Steganography Using Model-Based Selection and Double-Layered Payload AssignmentIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.337654134:8(7785-7800)Online publication date: Aug-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media