Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Image-based rendering in the gradient domain

Published: 01 November 2013 Publication History

Abstract

We propose a novel image-based rendering algorithm for handling complex scenes that may include reflective surfaces. Our key contribution lies in treating the problem in the gradient domain. We use a standard technique to estimate scene depth, but assign depths to image gradients rather than pixels. A novel view is obtained by rendering the horizontal and vertical gradients, from which the final result is reconstructed through Poisson integration using an approximate solution as a data term. Our algorithm is able to handle general scenes including reflections and similar effects without explicitly separating the scene into reflective and transmissive parts, as required by previous work. Our prototype renderer is fully implemented on the GPU and runs in real time on commodity hardware.

References

[1]
Beery, E., and Yeredor, A. 2008. Blind separation of superimposed shifted images using parameterized joint diagonalization. IEEE Transactions on Image Processing 17, 3, 340--353.
[2]
Bergen, J. R., Burt, P. J., Hingorani, R., and Peleg, S. 1992. A three-frame algorithm for estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 9, 886--896.
[3]
Bhat, D. N., and Nayar, S. K. 1998. Stereo and specular reflection. International Journal of Computer Vision 26, 2, 91--106.
[4]
Buehler, C., Bosse, M., McMillan, L., Gortler, S. J., and Cohen, M. F. 2001. Unstructured Lumigraph rendering. Proc. SIGGRAPH 2001, 425--432.
[5]
Carceroni, R. L., and Kutulakos, K. N. 2002. Multi-view scene capture by surfel sampling: From video streams to nonrigid 3D motion, shape and reflectance. International Journal of Computer Vision 49, 2/3, 175--214.
[6]
Chaurasia, G., Duchene, S., Sorkine-Hornung, O., and Drettakis, G. 2013. Depth synthesis and local warps for plausible image-based navigation. ACM Transactions on Graphics 32, 3, Article no. 30.
[7]
Chen, S., and Williams, L. 1993. View interpolation for image synthesis. Proc. SIGGRAPH '93, 279--288.
[8]
Criminisi, A., Kang, S. B., Swaminathan, R., Szeliski, R., and Anandan, P. 2005. Extracting layers and analyzing their specular properties using epipolar-plane-image analysis. Computer Vision and Image Understanding 97, 1, 51--85.
[9]
Debevec, P. E., Taylor, C. J., and Malik, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach. Proc. SIGGRAPH '96, 11--20.
[10]
Diamant, Y., and Schechner, Y. Y. 2008. Overcoming visual reverberations. Proc. Computer Vision and Pattern Recognition (CVPR'08), 1--8.
[11]
Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., de Aguiar, E., Ahmed, N., Theobalt, C., and Sellent, A. 2008. Floating textures. Computer Graphics Forum (Proc. Eurographics 2008) 27, 2, 409--418.
[12]
Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D., and Szeliski, R. 2010. Ambient point clouds for view interpolation. ACM Transactions on Graphics (Proc. SIGGRAPH 2010) 29, 4, Article no. 95.
[13]
Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The Lumigraph. Proc. SIGGRAPH '96, 43--54.
[14]
Hirschmüller, H. 2008. Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2, 328--341.
[15]
Irani, M., Rousso, B., and Peleg, S. 1994. Computing occluding and transparent motions. International Journal of Computer Vision 12, 1, 5--16.
[16]
Ju, S. X., Black, M. J., and Jepson, A. D. 1996. Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. Proc. Computer Vision and Pattern Recognition (CVPR '96), 307--314.
[17]
Kolmogorov, V., and Zabih, R. 2002. Multi-camera scene reconstruction via graph cuts. Proc. European Conference on Computer Vision 2002 (ECCV 2002), 82--96.
[18]
Levin, A., Zomet, A., and Weiss, Y. 2004. Separating reflections from a single image using local features. Proc. Computer Vision and Pattern Recognition 2004 (CVPR 2004) 1, 306--313.
[19]
Levoy, M., and Hanrahan, P. 1996. Light field rendering. Proc. SIGGRAPH '96, 31--42.
[20]
Linz, C., Lipski, C., and Magnor, M. 2010. Multi-image interpolation based on graph-cuts and symmetric optical flow. Proc. Vision, Modeling and Visualization 2010 (VMV 2010), 115--122.
[21]
Loop, C., and Zhang, Z. 1999. Computing rectifying homographies for stereo vision. Proc. Computer Vision and Pattern Recognition (CVPR '99), 125--131.
[22]
Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. 2009. Moving gradients: a path-based method for plausible image interpolation. ACM Transactions on Graphics (Proc. SIGGRAPH 2009) 28, 3, Article no. 42.
[23]
Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Transactions on Graphics (Proc. SIGGRAPH 2003) 22, 3, 313--318.
[24]
Popescu, V., Mei, C., Dauble, J., and Sacks, E. 2006. Reflected-scene impostors for realistic reflections at interactive rates. Computer Graphics Forum (Proc. Eurographics 2006) 25, 3, 313--322.
[25]
Schechner, Y. Y., Shamir, J., and Kiryati, N. 1999. Polarization-based decorrelation of transparent layers: The inclination angle of an invisible surface. Proc. International Conference on Computer Vision (ICCV '99), 814--819.
[26]
Schechner, Y. Y., Kiryati, N., and Shamir, J. 2000. Blind recovery of transparent and semireflected scenes. Proc. Computer Vision and Pattern Recognition (CVPR 2000), 38--43.
[27]
Shade, J., Gortler, S., He, L., and Szeliski, R. 1998. Layered depth images. Proc. SIGGRAPH '98, 231--242.
[28]
Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., Carnegie Mellon University.
[29]
Shizawa, M., and Mase, K. 1991. A unified computational theory of motion transparency and motion boundaries based on eigenenergy analysis. Proc. Computer Vision and Pattern Recognition (CVPR '91), 289--295.
[30]
Shum, H.-Y., Chan, S.-C., and Kang, S. B. 2007. Image-Based Rendering. Springer, New York, NY.
[31]
Sinha, S. N., Steedly, D., and Szeliski, R. 2009. Piecewise planar stereo for image-based rendering. Proc. International Conference on Computer Vision (ICCV 2009), 1881--1888.
[32]
Sinha, S. N., Kopf, J., Goesele, M., Scharstein, D., and Szeliski, R. 2012. Image-based rendering for scenes with reflections. ACM Transactions on Graphics (Proc. SIGGRAPH 2012) 31, 4, Article no. 100.
[33]
Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics (Proc. SIGGRAPH 2006) 25, 3, 835--846.
[34]
Szeliski, R., Avidan, S., and Anandan, P. 2000. Layer extraction from multiple images containing reflections and transparency. Proc. Computer Vision and Pattern Recognition (CVPR 2000), 246--253.
[35]
Tsin, Y., Kang, S. B., and Szeliski, R. 2006. Stereo matching with linear superposition of layers. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 2, 290--301.
[36]
Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3, 600--608.

Cited By

View all
  • (2024)RefScale: Multi-temporal Assisted Image Rescaling in Repetitive Observation ScenariosProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681254(9866-9874)Online publication date: 28-Oct-2024
  • (2024)A Framework for Single-View Multi-Plane Image Inpainting2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR)10.1109/MIPR62202.2024.00092(536-541)Online publication date: 7-Aug-2024
  • (2024)StereoDiffusion: Training-Free Stereo Image Generation Using Latent Diffusion Models2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)10.1109/CVPRW63382.2024.00737(7416-7425)Online publication date: 17-Jun-2024
  • Show More Cited By

Index Terms

  1. Image-based rendering in the gradient domain

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 6
      November 2013
      671 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2508363
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 November 2013
      Published in TOG Volume 32, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. gradient domain processing
      2. image-based rendering

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)13
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)RefScale: Multi-temporal Assisted Image Rescaling in Repetitive Observation ScenariosProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681254(9866-9874)Online publication date: 28-Oct-2024
      • (2024)A Framework for Single-View Multi-Plane Image Inpainting2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR)10.1109/MIPR62202.2024.00092(536-541)Online publication date: 7-Aug-2024
      • (2024)StereoDiffusion: Training-Free Stereo Image Generation Using Latent Diffusion Models2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)10.1109/CVPRW63382.2024.00737(7416-7425)Online publication date: 17-Jun-2024
      • (2024)Perceptual cue-guided adaptive image downscaling for enhanced semantic segmentation on large document imagesInternational Journal on Document Analysis and Recognition10.1007/s10032-023-00454-727:2(159-175)Online publication date: 1-Jun-2024
      • (2023)DynPointProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669167(69532-69545)Online publication date: 10-Dec-2023
      • (2023)Guided Linear UpsamplingACM Transactions on Graphics10.1145/359245342:4(1-12)Online publication date: 26-Jul-2023
      • (2023)Depth Self-Supervision for Single Image Novel View Synthesis2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS55552.2023.10342058(5836-5843)Online publication date: 1-Oct-2023
      • (2023)LoLep: Single-View View Synthesis with Locally-Learned Planes and Self-Attention Occlusion Inference2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00995(10807-10817)Online publication date: 1-Oct-2023
      • (2023)DiffDreamer: Towards Consistent Unsupervised Single-view Scene Extrapolation with Conditional Diffusion Models2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00204(2139-2150)Online publication date: 1-Oct-2023
      • (2022)Neural Point Catacaustics for Novel-View Synthesis of ReflectionsACM Transactions on Graphics10.1145/3550454.355549741:6(1-15)Online publication date: 30-Nov-2022
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media