Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2556288.2557252acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

VacuumTouch: attractive force feedback interface for haptic interactive surface using air suction

Published: 26 April 2014 Publication History

Abstract

We present VacuumTouch, a novel haptic interface architecture for touch screens that provides attractive force feedback to the user's finger. VacuumTouch consists of an air pump and solenoid air valves that connect to the surface of the touch screen and suck the air above the surface where the user's finger makes contact. VacuumTouch does not require the user to hold or attach additional devices to provide the attractive force, which allows for easy interaction with the surface. This paper introduces the implementation of the VacuumTouch architecture and some applications for enhancement of the graphical user interface, namely a suction button, a suction slider, and a suction dial. The quantitative evaluation was conducted with the suction dial and showed that the attractive force provided by VacuumTouch improved the performance of the dial menu interface and its potential effects. At the end of this paper, we discuss the current prototype's advantages and limitations, as well as possible improvements and potential capabilities.

Supplementary Material

suppl.mov (pn1583-file3.mp4)
Supplemental video

References

[1]
Akamatsu, M. and Sato, S. A multi-modal mouse with tactile and force feedback. International Journal of Human - Computer Studies 40, (1994), 443 - 453.
[2]
Amemiya, K. and Tanaka, Y. Portable Tactile Feedback Interface Using Air Jet. In Proc. ICAT 1999, VRSJ (1999), 115--122.
[3]
Bau, O., Poupyrev, I., Israr, A. and Harrison, C. Teslatouch: electrovibration for touch surfaces. In Proc. UIST 2010, ACM Press (2010), 283--292.
[4]
Bita, I., Govil, A. and Gusev, E. Mirsol(R) - MEMS-based direct view reflective display technology. Handbook of Visual Display Technology, Springer (2012), 1777--1786.
[5]
Cardin, S., Vexo, F. and Thalmann, D. Head mounted wind. In Proc. CASA2007 (2007), 101--108.
[6]
Deligiannidis, L. and Jacob, R. J. K. The VR scooter: wind and tactile feedback improve user performance. In Proc. IEEE 3DUI 2006, IEEE (2006), 143--150.
[7]
Dionisio, J. Virtual hell: a trip through the flames. Computer Graphics and Applications 17, 3, IEEE (1997), 11--14.
[8]
Follmer, S., Leithinger, D., Olwal, A., Cheng, N. and Ishii, H. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shapechanging devices. In Proc. UIST 2012, ACM Press (2012), 519--528.
[9]
Fukumoto, M. and Sugimura, T. Active Click: tactile feedback for touch panels. Ext. Abstracts CHI 2001, ACM Press (2001), 121--122.
[10]
Furuya, T., Yanagisawa, Y., Tamesue, T. and Itoh, K. Transmission of acoustic information of percussion instruments through tactile sensation using air-jet stimulation for hearing impaired person. In Proc. UAHCI 2009, Springer (2009), 48--57.
[11]
Gupta, S., Morris, D., Patel, N. S. and Tan, D. AirWave: non-contact haptic feedback using air vortex rings. In Proc. UbiComp 2013, ACM Press (2013), 1--10.
[12]
Hachisu, T. and Kajimoto, H. HACHIStack: dual-layer photo touch sensing for haptic and auditory tapping interaction. In Proc. CHI 2013, ACM Press (2013), 1411--1420.
[13]
Hashimoto, Y., Nakata, Y. and Kajimoto, H. Novel Tactile display for emotional tactile experience. In Proc. ACE 2009, ACM Press (2009), 124--131.
[14]
Heilig, M. Sensorama simulator. US Patent (1962) 3050870.
[15]
Hoshi, T., Takahashi, M., Iwamoto, T. and Shinoda, H. Non-contact tactile display based on radiation pressure of airborne ultrasound. In IEEE Transactions on Haptics 3, 3 (2010), 155--165.
[16]
Kim, Y., Kim, S., Ha, T., Oakley, I., Woo, W. and Ryu, J. Air-jet button effects in AR. In Proc. ICAT 2006, Springer (2006), 384--391.
[17]
King, C.-H., Franco, M., Culjat, M. O., Higa, A. T., Bisley, J. W., Dutson, E. and Grundfest, W. S. Fabrication and characterization of a balloon actuator array for haptic feedback in robotic surgery. Journal of Medical Devices 2, 4 (2008).
[18]
Kojima, Y., Hashimoto, Y. and Kajimoto, H. A novel wearable device to present localized sensation of wind. In Proc. ACE 2009, ACM Press (2009), 61--65.
[19]
Kulkarni, S. D., Minor, M. A., Deaver, M. W. and Pardyjak, E. R. Output feedback control of wind display in a virtual environment. In Proc. ICRA 2007, IEEE (2007), 832--839.
[20]
Makino, Y. and Shinoda, H. Suction pressure tactile display using dual temporal stimulation modes. In Proc. SICE 2005, IEEE (2005), 1285--1288.
[21]
Matoba, Y., Sato, T., Takahashi, N. and Koike, H. ClaytricSurface: an interactive surface with dynamic softness control capability. In SIGGRAPH 2012 Emerging Technologies, ACM Press (2012).
[22]
Moon, T. and Kim, G. J. Design and evaluation of a wind display for virtual reality. In Proc. VRST 2004, ACM Press (2004), 122--128.
[23]
Ng, A., Lepinski, J., Wigdor, D., Sanders, S. and Dietz, P. Designing for Low-Latency Direct-Touch Input. In Proc. UIST 2012, ACM Press (2012), 453--464.
[24]
Ohnishi, H. and Mochizuki, K. Effect of delay of feedback force on perception of elastic force: a psychophysical approach. IEICE Transactions on Communications E90-B(1) (2007), 12--20.
[25]
Okamoto, S., Konyo, M, Saga, S. and Tadokoro, S. Detectability and percpetual consequences of delayed feedback in a vibrotactile texture display. IEEE Transaction on Haptics 2, 2 (2009), 73--84.
[26]
Porquis, L. B. C., Konyo, M. and Tadokoro, S. Tactile-based torque illusion controlled by strain distributions on multi-finger contact. In Proc. Haptics Symposium 2012, IEEE (2012), 393--398.
[27]
Poupyrev, I. and S. Maruyama. Tactile interfaces for small touch screens. In Proc. UIST 2003, ACM Press (2003), 217--220.
[28]
Saga, S. and Deguchi, K. Lateral-force-based 2.5 dimensional tactile display for touch screen. In Proc. Haptics Symposium 2012, IEEE (2012), 15--22.
[29]
Sawada, E., Ida, S., Awaji, T., Morishita, K., Aruga, T., Takeichi, R., Fujii, T., Kimura, H., Nakamura, T., Furukawa, M., Shimizu, N., Tokiwa, T., Nii, H., Sugimoto, M. and Inami, M. BYU-BYU-View, a wind communication interface. In SIGGRAPH 2007 Emerging Technologies, ACM Press (2007).
[30]
Sodhi, R., Glisson, M., Poupyrev, I., Rothera, A. and Dauner, J. AIREAL: tactile gaming experinces in free air. In SIGGRAPH 2013 Emerging Technologies, ACM Press (2013).
[31]
Suzuki, Y. and Kobayashi, M. Air jet driven force feedback in virtual reality. In Proc.IEEE Computer Graphics and Applications 25, 1, IEEE (2006), 44--47.
[32]
Yoshida, S., Mizota, T. and Noma, H. Development of an integrated multi-axis tactile sensor: distributed preprocessing for tactile recognitions. In Proc. IEEE VR 2007, IEEE (2007), 281--282.
[33]
Yoshimoto, S., Hamada, Y., Tokui, T., Suetake, T., Imura, M., Kuroda, Y. and Oshiro, O. Haptic canvas: dilatant fluid based haptic interaction. In SIGGRAPH 2010 Emerging Technologies, ACM Press (2010).
[34]
Wang, D., Tuer, K., Rossi, M. and Shu, J. Haptic overlay device for flat panel touch displays. In Proc. HAPTICS 2004, IEEE (2004), 290.
[35]
Weiss, M., Wacharamanotham, C., Voelker, S., and Borchers, J. FingerFlux: near-surface haptic feedback on tabletops. In Proc. UIST 2011, ACM Press (2011), 615--620.

Cited By

View all
  • (2024)Three Degree-of-Freedom Soft Continuum Kinesthetic Haptic Display for Telemanipulation Via Sensory Substitution at the Finger2024 IEEE Conference on Telepresence10.1109/Telepresence63209.2024.10841502(79-86)Online publication date: 16-Nov-2024
  • (2021)Static Force Measurement Using Piezoelectric SensorsJournal of Sensors10.1155/2021/66642002021(1-8)Online publication date: 15-Mar-2021
  • (2021)A Survey on Haptic Technologies for Mobile Augmented RealityACM Computing Surveys10.1145/346539654:9(1-35)Online publication date: 8-Oct-2021
  • Show More Cited By

Index Terms

  1. VacuumTouch: attractive force feedback interface for haptic interactive surface using air suction

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
    April 2014
    4206 pages
    ISBN:9781450324731
    DOI:10.1145/2556288
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 April 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. air suction
    2. attractive force
    3. haptic interface
    4. interactive surface
    5. vacuumtouch

    Qualifiers

    • Research-article

    Conference

    CHI '14
    Sponsor:
    CHI '14: CHI Conference on Human Factors in Computing Systems
    April 26 - May 1, 2014
    Ontario, Toronto, Canada

    Acceptance Rates

    CHI '14 Paper Acceptance Rate 465 of 2,043 submissions, 23%;
    Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

    Upcoming Conference

    CHI 2025
    ACM CHI Conference on Human Factors in Computing Systems
    April 26 - May 1, 2025
    Yokohama , Japan

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)40
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Three Degree-of-Freedom Soft Continuum Kinesthetic Haptic Display for Telemanipulation Via Sensory Substitution at the Finger2024 IEEE Conference on Telepresence10.1109/Telepresence63209.2024.10841502(79-86)Online publication date: 16-Nov-2024
    • (2021)Static Force Measurement Using Piezoelectric SensorsJournal of Sensors10.1155/2021/66642002021(1-8)Online publication date: 15-Mar-2021
    • (2021)A Survey on Haptic Technologies for Mobile Augmented RealityACM Computing Surveys10.1145/346539654:9(1-35)Online publication date: 8-Oct-2021
    • (2020)Development of MEMS Tactile Sensation Device for Haptic RobotJournal of Robotics and Mechatronics10.20965/jrm.2020.p031532:2(315-322)Online publication date: 20-Apr-2020
    • (2018)SpiroSurface: A Repulsive and Attractive Force Display for Interactive Tabletops Using a Pneumatic SystemIEEE Computer Graphics and Applications10.1109/MCG.2018.04273165938:4(54-70)Online publication date: Jul-2018
    • (2017)Computational design and fabrication of soft pneumatic objects with desired deformationsACM Transactions on Graphics10.1145/3130800.313085036:6(1-12)Online publication date: 20-Nov-2017
    • (2017)SparkleProceedings of the 2017 CHI Conference on Human Factors in Computing Systems10.1145/3025453.3025782(3705-3717)Online publication date: 2-May-2017
    • (2017)Investigating Haptic Perception of and Physiological Responses to Air Vortex Rings on a User's CheekProceedings of the 2017 CHI Conference on Human Factors in Computing Systems10.1145/3025453.3025501(3083-3094)Online publication date: 2-May-2017
    • (2017)The Application of Dynamic Analysis to Hand GesturesUniversal Access in Human–Computer Interaction. Designing Novel Interactions10.1007/978-3-319-58703-5_33(444-454)Online publication date: 16-May-2017
    • (2016)Interactive Cheek Haptic Display with Air Vortex Rings for Stress ModificationProceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems10.1145/2851581.2892299(1766-1771)Online publication date: 7-May-2016
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media