Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A reflectance display

Published: 27 July 2014 Publication History

Abstract

We present a reflectance display: a dynamic digital display capable of showing images and videos with spatially-varying, user-defined reflectance functions. Our display is passive: it operates by phase-modulation of reflected light. As such, it does not rely on any illumination recording sensors, nor does it require expensive on-the-fly rendering. It reacts to lighting changes instantaneously and consumes only a minimal amount of energy. Our work builds on the wave optics approach to BRDF fabrication of Levin et al. shortciteLevinBRDFFab13. We replace their expensive one-time hardware fabrication with a programable liquid crystal spatial light modulator, retaining high resolution of approximately 160 dpi. Our approach enables the display of a much wider family of angular reflectances, and it allows the display of dynamic content with time varying reflectance properties---"reflectance videos". To facilitate these new capabilities we develop novel reflectance design algorithms with improved resolution tradeoffs. We demonstrate the utility of our display with a diverse set of experiments including display of custom reflectance images and videos, interactive reflectance editing, display of 3D content reproducing lighting and depth variation, and simultaneous display of two independent channels on one screen.

Supplementary Material

ZIP File (a61-glasner.zip)
Supplemental material.
MP4 File (a61-sidebyside.mp4)

References

[1]
Ahrenberg, L., Benzie, P., Magnor, M., and Watson, J. 2006. Computer generated holography using parallel commodity graphics hardware. Opt. Express 14, 17 (Aug), 7636--7641.
[2]
Ahrenberg, L., Benzie, P., Magnor, M., and Watson, J. 2008. Computer generated holograms from three dimensional meshes using an analytic light transport model. Appl. Opt. 47, 10 (Apr), 1567--1574.
[3]
Benton, S. A., and Bove, V. M. 2007. Holographic Imaging. Wiley-Interscience.
[4]
Benton, S. 1991. Experiments in holographic video imaging. In SPIE, vol. 08, 247--267.
[5]
Comiskey, B., Albert, J. D., Yoshizawa, H., and Jacobson, J. 1998. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 6690, 253--255.
[6]
Cossairt, O., Nayar, S. K., and Ramamoorthi, R. 2008. Light Field Transfer: Global Illumination Between Real and Synthetic Objects. ACM SIGGRAPH (Aug).
[7]
Dallas, W. J. 1980. Computer-generated holograms. The Computer in Optical Research of Topics in Applied Physics 41, 291--366.
[8]
DeBitetto, D. J. 1969. Holographic panoramic stereograms synthesized from white light recordings. Appl. Opt. 8, 1740--1741.
[9]
Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1--62:10.
[10]
Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. In ECCV, 464--477.
[11]
Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6D reflectance field displays. ACM Trans. Graph. 27, 3.
[12]
Gerchberg, R. W., and Saxton, W. O. 1972. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237.
[13]
Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.
[14]
Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM SIGGRAPH 29, 3.
[15]
Hermerschmidt, A., Osten, S., Krüger, S., and Blümel, T. 2007. Wave front generation using a phase-only modulating liquid-crystal-based micro-display with hdtv resolution. In International Congress on Optics and Optoelectronics, International Society for Optics and Photonics, 65840E-65840E.
[16]
Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields. ACM Trans. Graph. 28, 5.
[17]
Hirsch, M., Izadi, S., Holtzman, H., and Raskar, R. 2012. 8D display: a relightable glasses-free 3d display. In Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces, ACM, 319--322.
[18]
Hirsch, M., Izadi, S., Holtzman, H., and Raskar, R. 2013. 8D: interacting with a relightable glasses-free 3D display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2209--2212.
[19]
Horisaki, R., and Tanida, J. 2013. Reflectance field display. Opt. Express 21, 9 (May), 11181--11186.
[20]
Hullin, M. B., Lensch, H. P. A., Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In EUROGRAPHICS, 475--483.
[21]
Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics State-of-the-Art Reports (STAR).
[22]
IMEC, 2011. IMEC scientific report 2011. http://www.imec.be/ScientificReport/SR2011/1414043.html.
[23]
Kim, S.-C., Moon, J.-W., Lee, D.-H., Son, K.-C., and Kim, E.-S., 2005. Holographic full-color 3D display system using color-LCoS spatial light modulator.
[24]
Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., and Pauly, M. 2012. Architectural caustics controlling light with geometry. In Advances in Architectural Geometry.
[25]
Klug, M. A., Halle, M. W., Lucente, M. E., and Plesniak, W. J. 1993. Compact prototype one-step ultragram printer. Proc. SPIE 1914, 15--24.
[26]
Kogelnik, H. 1969. Coupled-wave theory for thick hologram gratings. Bell System Technical Journal 48, 2909.
[27]
Koike, T., and Naemura, T. 2008. BRDF display: interactive view dependent texture display using integral photography. In Proceedings of the 2008 workshop on Immersive projection technologies/Emerging display technologiges.
[28]
Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4.
[29]
Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6, 186.
[30]
Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, B., Matusik, W., and Zickler, T. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM SIGGRAPH.
[31]
Lucente, M. E. 1993. Interactive computation of holograms using a look-up table. J. of Electronic Imaging 2, 1, 28--34.
[32]
Lucente, M. 1994. Diffraction-specific Fringe Computation for Electro-holography. PhD thesis. AAI0575566.
[33]
Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3.
[34]
Mann, S. 1995. Recording Lightspace so Shadows and Highlights Vary with Varying Viewing Illumination. 2538--2540.
[35]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM SIGGRAPH Asia 28, 5.
[36]
Nayar, S., Belhumeur, P., and Boult, T. 2004. Lighting Sensitive Display. ACM Trans. on Graphics 23, 4, 963--979.
[37]
Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a handheld plenoptic camera. Stanford U. Tech Rep CSTR 2005-02.
[38]
Ochiai, Y., Oyama, A., and Toyoshima, K. 2012. A colloidal display: membrane screen that combines transparency, BRDF and 3D volume. In ACM SIGGRAPH Emerging Technologies.
[39]
Ochiai, Y., Oyama, A., Hoshi, T., and Rekimoto, J. 2013. Reflective, deformable, colloidal display: a waterfall-based colloidal membrane using focused ultrasonic waves. In SIGGRAPH Posters, 49.
[40]
Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum (Proc. Eurographics) 30, 2 (Apr.).
[41]
Patow, G., and Pueyo, X. 2005. A survey of inverse surface design from light transport behavior specification. Comput. Graph. Forum 24, 4, 773--789.
[42]
Patow, G., Pueyo, X., and Vinacua, A. 2007. User-guided inverse reflector design. Comput. Graph. 31, 3 (June), 501--515.
[43]
Redman, J. 1968. The three-dimensional reconstruction of people and outdoor scenes using holographic multiplexing. Proceedings of SPIE Seminar-in Depth on Holography 15, 117122.
[44]
Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In EGSR.
[45]
Smalley, D. E., Smithwick, Q. Y. J., Bove, V. M., Barabas, J., and Jolly, S. 2013. Anisotropic leaky-mode modulator for holographic video displays. Nature, 7454, 313317.
[46]
St-Hilaire, P., Benton, S. A., Lucente, M. E., and Hubel, P. M., 1992. Color images with the MIT holographic video display.
[47]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. JOSA 57, 9.
[48]
Tricoles, G. 1987. Computer generated holograms: an historical review. Appl. Opt. 26, 20 (Oct), 4351--4357.
[49]
Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80.
[50]
Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital Bas-Relief from 3D Scenes. ACM SIGGRAPH 26, 3 (Aug.).
[51]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM. SIGGRAPH 28, 3 (Aug.).
[52]
Yaroslavsky, L. 2004. Digital Holography and Digital Image Processing. Kluwer Academic Publishers.
[53]
Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M., and Gross, M. 2007. A bidirectional light field-hologram transform. In Computer Graphics Forum, vol. 26, 435--446.

Cited By

View all
  • (2024)Coherence as Texture - Passive Textureless 3D Reconstruction by Self-Interference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02367(25058-25066)Online publication date: 16-Jun-2024
  • (2023)Scratch-based Reflection Art via Differentiable RenderingACM Transactions on Graphics10.1145/359214242:4(1-12)Online publication date: 26-Jul-2023
  • (2022)Holographic Glasses for Virtual RealityACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530739(1-9)Online publication date: 27-Jul-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BRDF design
  2. digital displays
  3. wave optics

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)1
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Coherence as Texture - Passive Textureless 3D Reconstruction by Self-Interference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02367(25058-25066)Online publication date: 16-Jun-2024
  • (2023)Scratch-based Reflection Art via Differentiable RenderingACM Transactions on Graphics10.1145/359214242:4(1-12)Online publication date: 26-Jul-2023
  • (2022)Holographic Glasses for Virtual RealityACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530739(1-9)Online publication date: 27-Jul-2022
  • (2022)Analyzing phase masks for wide étendue holographic displays2022 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCP54855.2022.9887757(1-12)Online publication date: 1-Aug-2022
  • (2022)Exponentially-wide etendue displays using a tilting cascade2022 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCP54855.2022.9887737(1-12)Online publication date: 1-Aug-2022
  • (2019)Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color FilteringIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.289922925:5(1951-1960)Online publication date: May-2019
  • (2019)Research on Interactive Form and Language Conversion in Digital Display Design Based on Cloud Platform2019 International Conference on Robots & Intelligent System (ICRIS)10.1109/ICRIS.2019.00099(370-372)Online publication date: Jun-2019
  • (2018)Fabricating reflectors for displaying multiple imagesACM Transactions on Graphics10.1145/3197517.320140037:4(1-10)Online publication date: 30-Jul-2018
  • (2017)Mix-and-match holographyACM Transactions on Graphics10.1145/3130800.313083936:6(1-12)Online publication date: 20-Nov-2017
  • (2017)Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphicsACM Transactions on Graphics10.1145/3130800.313083236:6(1-17)Online publication date: 20-Nov-2017
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media