Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Parametric wave field coding for precomputed sound propagation

Published: 27 July 2014 Publication History

Abstract

The acoustic wave field in a complex scene is a chaotic 7D function of time and the positions of source and listener, making it difficult to compress and interpolate. This hampers precomputed approaches which tabulate impulse responses (IRs) to allow immersive, real-time sound propagation in static scenes. We code the field of time-varying IRs in terms of a few perceptual parameters derived from the IR's energy decay. The resulting parameter fields are spatially smooth and compressed using a lossless scheme similar to PNG. We show that this encoding removes two of the seven dimensions, making it possible to handle large scenes such as entire game maps within 100MB of memory. Run-time decoding is fast, taking 100μs per source. We introduce an efficient and scalable method for convolutionally rendering acoustic parameters that generates artifact-free audio even for fast motion and sudden changes in reverberance. We demonstrate convincing spatially-varying effects in complex scenes including occlusion/obstruction and reverberation, in our system integrated with Unreal Engine 3.

Supplementary Material

ZIP File (a38-raghuvanshi.zip)
Supplemental material.
MP4 File (a38-sidebyside.mp4)

References

[1]
Ajdler, T., Sbaiz, L., and Vetterli, M. 2006. The Plenacoustic Function and Its Sampling. Signal Processing, IEEE Transactions on 54, 10 (Oct.), 3790--3804.
[2]
Allen, J. B., and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am 65, 4, 943--950.
[3]
Beranek, L. L. 2003. Subjective Rank-Orderings and Acoustical Measurements for Fifty-Eight Concert Halls. Acta Acustica united with Acustica (May), 494--508.
[4]
Bradley, J. S., and Halliwell, R. E. 1988. Accuracy and reproducibility of auditorium acoustics measures. In British Institute of Acoustics, vol. 10, 399--406.
[5]
Calamia, P. 2009. Advances in Edge-Diffraction Modeling for Virtual-Acoustic Simulations. PhD thesis, Princeton University.
[6]
Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha, D. 2008. AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation. IEEE Transactions on Visualization and Computer Graphics 14, 6, 1707--1722.
[7]
Davy, J. L., Dunn, I. P., and Dubout, P. 1979. The Variance of Decay Rates in Reverberation Rooms. Acta Acustica united with Acustica (Aug.), 12--25.
[8]
Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., Sondhi, M., West, J. E., Pingali, G., Min, P., and Ngan, A. 2004. A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical Society of America 115, 2, 739--756.
[9]
Gade, A. 2007. Acoustics in Halls for Speech and Music. In Springer Handbook of Acoustics, T. Rossing, Ed., 2007 ed. Springer, May, ch. 9.
[10]
IASIG, 3D Working Group. 1999. Interactive 3D Audio Rendering Guidlelines, Level 2.0, Sept.
[11]
ISO 3382-1:2009. Acoustics - Measurement of room acoustic parameters - Part 1: Performance spaces. International Organization for Standardization.
[12]
James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995.
[13]
Kolarik, A. J., Cirstea, S., and Pardhan, S. 2011. Perceiving auditory distance using level and direct-to-reverberant ratio cues. The Journal of the Acoustical Society of America 130, 4 (Oct.), 2545.
[14]
Kowalczyk, K., and van Walstijn, M. 2010. Room acoustics simulation using 3-D compact explicit FDTD schemes. IEEE Transactions on Audio, Speech and Language Processing.
[15]
Krokstad, A. 2008. The Hundred Years Cycle in Room Acoustic Research and Design. In Reflections on sound, P. Svensson, Ed. Norwegian University of Science and Technology (NTNU), Trondheim, Norway, June, ch. 5.
[16]
Kuttruff, H. 2000. Room Acoustics, 4 ed. Taylor & Francis.
[17]
Laine, S., Siltanen, S., Lokki, T., and Savioja, L. 2009. Accelerated beam tracing algorithm. Applied Acoustics 70, 1 (Jan.), 172--181.
[18]
Mehra, R., Raghuvanshi, N., Savioja, L., Lin, M. C., and Manocha, D. 2012. An efficient GPU-based time domain solver for the acoustic wave equation. Applied Acoustics 73, 2 (Feb.), 83--94.
[19]
Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. 2013. Wave-based Sound Propagation in Large Open Scenes Using an Equivalent Source Formulation. ACM Trans. Graph. 32, 2 (Apr.).
[20]
Merimaa, J., and Pulkki, V. 2005. Spatial Impulse Response Rendering I: Analysis and Synthesis. J. Audio Eng. Soc 53, 12, 1115--1127.
[21]
Murphy, D., Kelloniemi, A., Mullen, J., and Shelley, S. 2007. Acoustic Modeling Using the Digital Waveguide Mesh. IEEE Signal Processing Magazine 24, 2 (Mar.), 55--66.
[22]
Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition. IEEE Transactions on Visualization and Computer Graphics 15, 5, 789--801.
[23]
Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M. C., and Govindaraju, N. K. 2010. Precomputed Wave Simulation for Real-Time Sound Propagation of Dynamic Sources in Complex Scenes. ACM Transactions on Graphics (proceedings of SIGGRAPH 2010) 29, 3 (July).
[24]
Rindel, J. H., and Christensen, C. L. 2013. The use of colors, animations and auralizations in room acoustics. In Internoise 2013.
[25]
Sabine, H. 1953. Room acoustics. Audio, Transactions of the IRE Professional Group on 1, 4, 4--12.
[26]
Sakamoto, S., Nagatomo, H., Ushiyama, A., and Tachibana, H. 2008. Calculation of impulse responses and acoustic parameters in a hall by the finite-difference time-domain method. Acoustical Science and Technology 29, 4.
[27]
Savioja, L., Rinne, T., and Takala, T. 1994. Simulation of room acoustics with a 3-D finite difference mesh. In Proceedings of the International Computer Music Conference, 463--466.
[28]
Savioja, L. 2010. Real-Time 3D Finite-Difference Time-Domain Simulation of Mid-Frequency Room Acoustics. In 13th International Conference on Digital Audio Effects (DAFx-10).
[29]
Schröder, D. 2011. Physically Based Real-Time Auralization of Interactive Virtual Environments. Logos Verlag, Dec.
[30]
Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. The Journal of the Acoustical Society of America 122, 3 (Sept.), 1624--1635.
[31]
Siltanen, S., Lokki, T., and Savioja, L. 2009. Frequency Domain Acoustic Radiance Transfer for Real-Time Auralization. Acta Acustica united with Acustica 95, 1, 106--117.
[32]
Siltanen, S., Lokki, T., and Savioja, L. 2010. Rays or Waves? Understanding the Strengths and Weaknesses of Computational Room Acoustics Modeling Techniques. In Proc. Int. Symposium on Room Acoustics.
[33]
Siltanen, S., Lokki, T., and Savioja, L. 2010. Room acoustics modeling with acoustic radiance transfer. Proc. ISRA Melbourne.
[34]
Siltanen, S. 2005. Geometry Reduction in Room Acoustics Modeling. Master's thesis, Helsinki University of Technology.
[35]
Southern, A., Siltanen, S., Murphy, D. T., and Savioja, L. 2013. Room Impulse Response Synthesis and Validation Using a Hybrid Acoustic Model. Audio, Speech, and Language Processing, IEEE Transactions on 21, 9, 1940--1952.
[36]
Stephenson, U. M., and Svensson, U. P. 2007. An improved energetic approach to diffraction based on the uncertainty principle. In 19th Int. Cong. on Acoustics (ICA).
[37]
Stettner, A., and Greenberg, D. P. 1989. Computer Graphics Visualization for Acoustic Simulation. SIGGRAPH Comput. Graph. 23, 3 (July), 195--206.
[38]
Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. The Journal of the Acoustical Society of America 106, 5 (Nov.), 2331--2344.
[39]
Takala, T., and Hahn, J. 1992. Sound rendering. SIGGRAPH Comput. Graph. 26, 2 (July), 211--220.
[40]
Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. RESound: interactive sound rendering for dynamic virtual environments. In Proceedings of ACM conference on Multimedia, ACM, New York, NY, USA, 271--280.
[41]
Tsingos, N. 2009. Pre-computing geometry-based reverberation effects for games. In 35th AES Conference on Audio for Games.
[42]
Valimaki, V., Parker, J. D., Savioja, L., Smith, J. O., and Abel, J. S. 2012. Fifty Years of Artificial Reverberation. Audio, Speech, and Language Processing, IEEE Transactions on 20, 5 (July), 1421--1448.
[43]
Yeh, H., Mehra, R., Ren, Z., Antani, L., Manocha, D., and Lin, M. 2013. Wave-ray Coupling for Interactive Sound Propagation in Large Complex Scenes. ACM Trans. Graph. 32, 6 (Nov.).

Cited By

View all
  • (2024)MIMOSA: Human-AI Co-Creation of Computational Spatial Audio Effects on VideosProceedings of the 16th Conference on Creativity & Cognition10.1145/3635636.3656189(156-169)Online publication date: 23-Jun-2024
  • (2024)PLATONE: An Immersive Geospatial Audio Spatialization Platform2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom)10.1109/MetaCom62920.2024.00020(34-41)Online publication date: 12-Aug-2024
  • (2024)Sound SpatializationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_250(1709-1714)Online publication date: 5-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. DSP
  2. convolution
  3. diffraction
  4. early decay time
  5. environmental effects
  6. exclusion
  7. impulse response
  8. obstruction
  9. occlusion
  10. parametric reverb
  11. reverberation time
  12. room acoustics
  13. scattering
  14. wave equation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)43
  • Downloads (Last 6 weeks)4
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)MIMOSA: Human-AI Co-Creation of Computational Spatial Audio Effects on VideosProceedings of the 16th Conference on Creativity & Cognition10.1145/3635636.3656189(156-169)Online publication date: 23-Jun-2024
  • (2024)PLATONE: An Immersive Geospatial Audio Spatialization Platform2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom)10.1109/MetaCom62920.2024.00020(34-41)Online publication date: 12-Aug-2024
  • (2024)Sound SpatializationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_250(1709-1714)Online publication date: 5-Jan-2024
  • (2023)Neural Volumetric Reconstruction for Coherent Synthetic Aperture SonarACM Transactions on Graphics10.1145/359214142:4(1-20)Online publication date: 26-Jul-2023
  • (2023)Lightweight Scene-aware Rain Sound Simulation for Interactive Virtual Environments2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)10.1109/VR55154.2023.00038(226-236)Online publication date: Mar-2023
  • (2022)Sound Synthesis, Propagation, and RenderingSynthesis Lectures on Visual Computing10.2200/S01162ED1V01Y202201VCP03311:2(1-110)Online publication date: 24-Mar-2022
  • (2022)Acoustic Rendering Based on Geometry Reduction and Acoustic Material Classification2022 IEEE Conference on Games (CoG)10.1109/CoG51982.2022.9893613(409-416)Online publication date: 21-Aug-2022
  • (2022)Interactive and Immersive AuralizationSonic Interactions in Virtual Environments10.1007/978-3-031-04021-4_3(77-113)Online publication date: 14-Oct-2022
  • (2021)Algorithmic Risk Assessments Can Alter Human Decision-Making Processes in High-Stakes Government ContextsProceedings of the ACM on Human-Computer Interaction10.1145/34795625:CSCW2(1-33)Online publication date: 18-Oct-2021
  • (2021)Holodeck: Immersive 3D Displays Using Swarms of Flying Light Specks [Extended Abstract]Proceedings of the 3rd ACM International Conference on Multimedia in Asia10.1145/3469877.3493698(1-7)Online publication date: 1-Dec-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media