Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2676726.2677010acmconferencesArticle/Chapter ViewAbstractPublication PagespoplConference Proceedingsconference-collections
research-article
Public Access

On Characterizing the Data Access Complexity of Programs

Published: 14 January 2015 Publication History

Abstract

Technology trends will cause data movement to account for the majority of energy expenditure and execution time on emerging computers. Therefore, computational complexity will no longer be a sufficient metric for comparing algorithms, and a fundamental characterization of data access complexity will be increasingly important. The problem of developing lower bounds for data access complexity has been modeled using the formalism of Hong and Kung's red/blue pebble game for computational directed acyclic graphs (CDAGs). However, previously developed approaches to lower bounds analysis for the red/blue pebble game are very limited in effectiveness when applied to CDAGs of real programs, with computations comprised of multiple sub-computations with differing DAG structure. We address this problem by developing an approach for effectively composing lower bounds based on graph decomposition. We also develop a static analysis algorithm to derive the asymptotic data-access lower bounds of programs, as a function of the problem size and cache size.

Supplementary Material

MPG File (p567-sidebyside.mpg)

References

[1]
G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical linear algebra. SIAM J. Matrix Analysis Applications, 32(3):866--901, 2011.
[2]
G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Brief announcement: Strong scaling of matrix multiplication algorithms and memory-independent communication lower bounds. In Proc. SPAA'12, pages 77--79, 2012.
[3]
G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication costs of fast matrix multiplication. J. ACM, 59(6): 32, 2012.
[4]
A. Barvinok. Computing the Ehrhart polynomial of a convex l attice polytope. Discrete and Computational Geometry, 12:35--48, 1994.
[5]
J. Bennett, A. Carbery, M. Christ, and T. Tao. Finite bounds for Holder-Brascamp-Lieb multilinear inequalities. Mathematical Research Letters, 55(4):647--666, 2010.
[6]
K. Bergman, S. Borkar, et al. Exascale computing study: Technology challenges in achieving exascale systems. DARPA IPTO, Tech. Rep, 2008.
[7]
G. Bilardi and E. Peserico. A characterization of temporal locality and its portability across memory hierarchies. Automata, Languages and Programming, pages 128--139, 2001.
[8]
G. Bilardi and F. P. Preparata. Processor - Time Tradeoffs under Bounded-Speed Message Propagation: Part II, Lower Bounds. Theory Comput. Syst., 32(5):531--559, 1999.
[9]
G. Bilardi, A. Pietracaprina, and P. D'Alberto. On the space and access complexity of computation DAGs. In Graph-Theoretic Concepts in Computer Science, volume 1928 of LNCS, pages 81--92. 2000.
[10]
G. Bilardi, M. Scquizzato, and F. Silvestri. A lower bound technique for communication on bsp with application to the fft. In Euro-Par, pages 676--687, 2012.
[11]
M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. Communication Lower Bounds and Optimal Algorithms for Programs That Reference Arrays Part 1. EECS Technical Report EECS'2013--6 1, UC Berkeley, May 2013.
[12]
S. A. Cook. An observation on time-storage trade off. J. Comput. Syst. Sci., 9(3):308--316, 1974.
[13]
J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Scientific Computing, 34(1), 2012.
[14]
V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan. Data access complexity: The red/blue pebble game revisited. Technical report, OSU/INRIA/LSU/UCLA, Sept. 2013. OSU-CI SRC-7/13-TR16.
[15]
V. Elango, F. Rastello, L. Pouchet, J. Ramanujam, and P. Sadayappan. On characterizing the data movement complexity of computational dags for parallel execution. In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '14, pages 296--306, 2014.
[16]
P. Feautrier. Parametric integer programming. RAIRO Recherche Operationnelle, 22(3):243--268, 1988.
[17]
S. H. Fuller and L. I. Millett. The Future of Computing Performance: Game Over or Next Level? The National Academies Press, 2011.
[18]
S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. Intl. J. of Parallel Programming, 34(3), 2006.
[19]
G. Gupta and S. Rajopadhye. The Z-polyhedral model. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'07), pages 237--248. ACM, 2007.
[20]
J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc. of the 13th annual ACM sympo. on Theory of computing (STOC'81), pages 326--333. ACM, 1981.
[21]
D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix multiplication. J. Parallel Distrib. Comput., 64(9):1017--1026, 2004.
[22]
A. Ketterlin and P. Clauss. Profiling data-dependence to assist parallelization: Framework, scope, and optimization. In MICRO, pages 437--448, 2012.
[23]
L. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc., 55:961--962, 1949.
[24]
D. Ranjan and M. Zubair. Vertex isoperimetric parameter of a computation graph. Int. J. Found. Comput. Sci., 23(4):941--964, 2012.
[25]
D. Ranjan, J. Savage, and M. Zubair. Strong I/O lower bounds for binomial and FFT computation graphs. In Computing and Combinatorics, volume 6842 of LNCS, pages 134--145. Springer, 2011.
[26]
D. Ranjan, J. E. Savage, and M. Zubair. Upper and lower I/O bounds for pebbling r-pyramids. J. Discrete Algorithms, 14:2--12, 2012.
[27]
J. Savage. Extending the Hong-Kung model to memory hierarchies. In Computing and Combinatorics, volume 959 of LNCS, pages 270--281. 1995.
[28]
J. E. Savage. Models of Computation. Addison-Wesley, 1998.
[29]
J. E. Savage and M. Zubair. A unified model for multicore arc hi-tectures. In Proceedings of the 1st International Forum on Next-generation Multicore/Manycore Technologies, page 9. ACM, 2008.
[30]
J. E. Savage and M. Zubair. Cache-optimal algorithms for option pricing. ACM Trans. Math. Softw., 37(1), 2010.
[31]
M. Scquizzato and F. Silvestri. Communication lower bounds for distributed-memory computations. CoRR, abs/1307.1805, 2013.
[32]
J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. High Performance Computing for Computational Science-VECPAR 2010, pages 1--25, 2011.
[33]
E. Solomonik, A. Buluc, and J. Demmel. Minimizing communication in all-pairs shortest paths. In IPDPS, 2013.
[34]
S. I. Valdimarsson. The Brascamp-Lieb polyhedron. Can. J. Math., 62(4):870--888, 2010.
[35]
L. G. Valiant. A bridging model for multi-core computing. J. Comput. Syst. Sci., 77:154--166, Jan. 2011.
[36]
S. Verdoolaege. isl: An integer set library for the poly hedral model. In Mathematical Software-ICMS 2010, pages 299--302. Springer, 2010.

Cited By

View all
  • (2024)Parallel Loop Locality Analysis for Symbolic Thread CountsProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3676948(219-232)Online publication date: 14-Oct-2024
  • (2024)Formal Verification of Source-to-Source Transformations for HLSProceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays10.1145/3626202.3637563(97-107)Online publication date: 1-Apr-2024
  • (2024)Brief Announcement: Red-Blue Pebbling with Multiple Processors: Time, Communication and Memory Trade-offsProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3660269(285-287)Online publication date: 17-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
POPL '15: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
January 2015
716 pages
ISBN:9781450333009
DOI:10.1145/2676726
  • cover image ACM SIGPLAN Notices
    ACM SIGPLAN Notices  Volume 50, Issue 1
    POPL '15
    January 2015
    682 pages
    ISSN:0362-1340
    EISSN:1558-1160
    DOI:10.1145/2775051
    • Editor:
    • Andy Gill
    Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 January 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. data access complexity
  2. i/o lower bounds
  3. red-blue pebble game
  4. static analysis

Qualifiers

  • Research-article

Funding Sources

Conference

POPL '15
Sponsor:

Acceptance Rates

POPL '15 Paper Acceptance Rate 52 of 227 submissions, 23%;
Overall Acceptance Rate 824 of 4,130 submissions, 20%

Upcoming Conference

POPL '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)156
  • Downloads (Last 6 weeks)14
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Parallel Loop Locality Analysis for Symbolic Thread CountsProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3676948(219-232)Online publication date: 14-Oct-2024
  • (2024)Formal Verification of Source-to-Source Transformations for HLSProceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays10.1145/3626202.3637563(97-107)Online publication date: 1-Apr-2024
  • (2024)Brief Announcement: Red-Blue Pebbling with Multiple Processors: Time, Communication and Memory Trade-offsProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3660269(285-287)Online publication date: 17-Jun-2024
  • (2024)Tightening I/O Lower Bounds through the Hourglass Dependency PatternProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3659986(183-193)Online publication date: 17-Jun-2024
  • (2022)CARL: Compiler Assigned Reference LeasingACM Transactions on Architecture and Code Optimization10.1145/349873019:1(1-28)Online publication date: 17-Mar-2022
  • (2021)IOOpt: automatic derivation of I/O complexity bounds for affine programsProceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation10.1145/3453483.3454103(1187-1202)Online publication date: 19-Jun-2021
  • (2021)Pebbles, Graphs, and a Pinch of CombinatoricsProceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3409964.3461796(328-339)Online publication date: 6-Jul-2021
  • (2020)Time Complexity of In-Memory Solution of Linear SystemsIEEE Transactions on Electron Devices10.1109/TED.2020.299243567:7(2945-2951)Online publication date: Jul-2020
  • (2019)A Relational Theory of LocalityACM Transactions on Architecture and Code Optimization10.1145/334110916:3(1-26)Online publication date: 20-Aug-2019
  • (2018)Red-Blue Pebble GameProceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures10.1145/3210377.3210387(195-204)Online publication date: 11-Jul-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media