Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Multi-scale modeling and rendering of granular materials

Published: 27 July 2015 Publication History

Abstract

We address the problem of modeling and rendering granular materials---such as large structures made of sand, snow, or sugar---where an aggregate object is composed of many randomly oriented, but discernible grains. These materials pose a particular challenge as the complex scattering properties of individual grains, and their packing arrangement, can have a dramatic effect on the large-scale appearance of the aggregate object. We propose a multi-scale modeling and rendering framework that adapts to the structure of scattered light at different scales. We rely on path tracing the individual grains only at the finest scale, and---by decoupling individual grains from their arrangement---we develop a modular approach for simulating longer-scale light transport. We model light interactions within and across grains as separate processes and leverage this decomposition to derive parameters for classical radiative transport, including standard volumetric path tracing and a diffusion method that can quickly summarize the large scale transport due to many grain interactions. We require only a one-time precomputation per exemplar grain, which we can then reuse for arbitrary aggregate shapes and a continuum of different packing rates and scales of grains. We demonstrate our method on scenes containing mixtures of tens of millions of individual, complex, specular grains that would be otherwise infeasible to render with standard techniques.

Supplementary Material

ZIP File (a49-meng.zip)
Supplemental files

References

[1]
Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proc. of ACM SIGGRAPH, 65--74.
[2]
Bruneton, E., and Neyret, F. 2012. A survey of non-linear prefiltering methods for efficient and accurate surface shading. IEEE Trans. on Visualization and Computer Graphics 18, 2, 242--260.
[3]
Bubnik, Z., Kadlec, P., Urban, D., and Bruhns, M. 1998. Sugar Technologists Manual. Verlag Dr. Albert Bartens.
[4]
Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303--328.
[5]
Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.
[6]
Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. on Graphics (Proc. SIGGRAPH) 23, 3, 343--353.
[7]
Christensen, P. H., Harker, G., Shade, J., Schubert, B., and Batali, D. 2012. Multiresolution radiosity caching for global illumination in movies. In ACM SIGGRAPH Talks.
[8]
Cuffey, K., and Paterson, W. 2010. The physics of glaciers. Academic Press.
[9]
Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. on Graphics 18, 1, 1--34.
[10]
d'Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4, 56:1--56:14.
[11]
d'Eon, E. 2013. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear boltzmann transport in arbitrary dimension. Transport Theory and Statistical Physics 42, 6-7, 237--297.
[12]
Dixmier, M. 1978. Une nouvelle description des empilements aléatoires et des fluides denses. Le Journal de Physique 39, 873--895.
[13]
Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F. H., Connelly, R., Torquato, S., and Chaikin, P. M. 2004. Improving the density of jammed disordered packings using ellipsoids. Science 303, 5660 (Feb.), 990--993.
[14]
Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1032--1039.
[15]
Donovan, T., Sutton, T., and Danon, Y. 2003. Implementation of chord length sampling for transport through a binary stochastic mixture. In Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew.
[16]
Dullien, F. A. L. 1991. Porous Media: Fluid Transport and Pore Structure, 2nd ed. Academic Press Inc.
[17]
Durant, S., Calvo-Perez, O., Vukadinovic, N., and Greffet, J.-J. 2007. Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. Journal of the Optical Society of America 24, 9, 2953--2962.
[18]
Filip, J., and Haindl, M. 2009. Bidirectional texture function modeling: A state of the art survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 31, 11, 1921--1940.
[19]
Foldy, L. L. 1945. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review 67, 107--119.
[20]
Habel, R., Christensen, P. H., and Jarosz, W. 2013. Photon beam diffusion: A hybrid monte carlo method for subsurface scattering. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 32, 4.
[21]
Henyey, L. G., and Greenstein, J. L. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93, 70--83.
[22]
Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.
[23]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. Computer Graphics (Proc. SIGGRAPH) 35, 511--518.
[24]
Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Computer Graphics (Proc. SIGGRAPH), 271--280.
[25]
Kajiya, J. T. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) 20, 143--150.
[26]
Kimmel, B. W., and Baranoski, G. V. G. 2007. A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. Optics Express 15, 15, 9755--9777.
[27]
Levitz, P. 1993. Knudsen diffusion and excitation transfer in random porous media. Journal of Physical Chemistry 97, 3813--3818.
[28]
Li, H., Pellacini, F., and Torrance, K. E. 2005. A hybrid Monte Carlo method for accurate and efficient subsurface scattering. In Proc. Eurographics Symposium on Rendering, 283--290.
[29]
Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. 2002. Level of Detail for 3D Graphics. Elsevier Science Inc.
[30]
Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. on Graphics (Proc. SIGGRAPH) 22, 3, 759--769.
[31]
McWhorter, D. B., and Sunada, D. K. 1977. Ground-water hydrology and hydraulics. Water Resources Publications, LLC.
[32]
Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3, 1067--1074.
[33]
Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. In Proc. Eurographics Symposium on Rendering, 231--242.
[34]
Neyret, F. 1998. Modeling, animating, and rendering complex scenes using volumetric textures. IEEE Trans. on Visualization and Computer Graphics 4, 1, 55--70.
[35]
Olson, G., Miller, D., Larsen, E., and Morel, J. 2006. Chord length distributions in binary stochastic media in two and three dimensions. Journal of Quantitative Spectroscopy & Radiative Transfer 101, 269--283.
[36]
Peytavie, A., Galin, E., Merillou, S., and Grosjean, J. 2009. Procedural Generation of Rock Piles Using Aperiodic Tiling. Computer Graphics Forum (Proc. Pacific Graphics) 28, 7, 1801--1810.
[37]
Pharr, M., and Hanrahan, P. M. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. of ACM SIGGRAPH, 75--84.
[38]
Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers Inc.
[39]
Randrianalisoa, J., and Baillis, D. 2009. Radiative transfer in dispersed media: Comparison between homogeneous phase and multiphase approaches. Journal of Heat Transfer 132, 2, 023405--023405.
[40]
Randrianalisoa, J., and Baillis, D. 2010. Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach. Journal of Quantitative Spectroscopy and Radiative Transfer 111, 10, 1372--1388.
[41]
Rushmeier, H. E. 1988. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, Cornell University, Ithaca, NY, USA.
[42]
Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM Trans. on Graphics 31, 1, 3:1--3:12.
[43]
Schröder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 30, 4, 1277--1286.
[44]
Singh, B., and Kaviany, M. 1992. Modelling radiative heat transfer in packed beds. International Journal of Heat and Mass Transfer 35, 6, 1397--1405.
[45]
Skoge, M., Donev, A., Stillinger, F. H., and Torquato, S. 2006. Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review E 74, 4, 041127.
[46]
Song, C., Wang, P., and Makse, H. A. 2008. A phase diagram for jammed matter. Nature, 7195, 629--632.
[47]
Stam, J. 1995. Multiple scattering as a diffusion process. Proc. Eurographics Workshop on Rendering, 41--50.
[48]
Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1054--1061.
[49]
Torquato, S., and Lu, B. 1993. Chord-length distribution function for two-phase random media. Physical Review E 47, 2950--2953.
[50]
Torquato, S. 2001. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics. Springer.
[51]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9, 1105--1112.
[52]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Computer Graphics (Proc. SIGGRAPH), 255--264.
[53]
Wu, H., Dorsey, J., and Rushmeier, H. 2013. Inverse bi-scale material design. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 32.
[54]
Zhao, S., Hašan, M., Ramamoorthi, R., and Bala, K. 2013. Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 131:1--131:12.
[55]
Zinke, A., and Weber, A. 2006. Global illumination for fiber based geometries. In Proc. Ibero-American Symposium in Computer Graphics (SIACG).
[56]
Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2, 342--356.
[57]
Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, 32:1--32:10.

Cited By

View all
  • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
  • (2024)Rendering the Bluish Appearance of Snow: When Light Transmission MattersIEEE Computer Graphics and Applications10.1109/MCG.2023.330751744:1(50-61)Online publication date: Jan-2024
  • (2024)Learning subsurface scattering solutions of tightly-packed granular media using optimal transportComputers & Graphics10.1016/j.cag.2024.103895119(103895)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. Multi-scale modeling and rendering of granular materials

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 4
    August 2015
    1307 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2809654
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2015
    Published in TOG Volume 34, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. granular media
    2. physically based rendering

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)41
    • Downloads (Last 6 weeks)8
    Reflects downloads up to 06 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
    • (2024)Rendering the Bluish Appearance of Snow: When Light Transmission MattersIEEE Computer Graphics and Applications10.1109/MCG.2023.330751744:1(50-61)Online publication date: Jan-2024
    • (2024)Learning subsurface scattering solutions of tightly-packed granular media using optimal transportComputers & Graphics10.1016/j.cag.2024.103895119(103895)Online publication date: Apr-2024
    • (2024)Visual simulation of opal using bond percolation through the weighted Voronoi diagram and the Ewald constructionThe Visual Computer10.1007/s00371-024-03504-140:7(5005-5016)Online publication date: 5-Jun-2024
    • (2023)Tailoring the optical and UV reflectivity of CFRP-epoxy composites: Approaches and selected resultsScience and Engineering of Composite Materials10.1515/secm-2022-017530:1Online publication date: 20-Mar-2023
    • (2023)Curl Noise JitteringSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618163(1-11)Online publication date: 10-Dec-2023
    • (2023)Deep Appearance PrefilteringACM Transactions on Graphics10.1145/357032742:2(1-23)Online publication date: 16-Jan-2023
    • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
    • (2023)Accelerating Hair Rendering by Learning High‐Order Scattered RadianceComputer Graphics Forum10.1111/cgf.1489542:4Online publication date: 26-Jul-2023
    • (2022)Automatic quantization for physics-based simulationACM Transactions on Graphics10.1145/3528223.353015441:4(1-16)Online publication date: 22-Jul-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media