Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Spatial Target Function for Metropolis Photon Tracing

Published: 15 November 2016 Publication History

Abstract

The human visual system is sensitive to relative differences in luminance, but light transport simulation algorithms based on Metropolis sampling often result in a highly nonuniform relative error distribution over the rendered image. Although this issue has previously been addressed in the context of the Metropolis light transport algorithm, our work focuses on Metropolis photon tracing. We present a new target function (TF) for Metropolis photon tracing that ensures good stratification of photons leading to pixel estimates with equalized relative error. We develop a hierarchical scheme for progressive construction of the TF from paths sampled during rendering. In addition to the approach taken in previous work, where the TF is defined in the image plane, ours can be associated with compact spatial regions. This allows us to take advantage of illumination coherence to more robustly estimate the TF while adapting to geometry discontinuities. To sample from this TF, we design a new replica exchange Metropolis scheme. We apply our algorithm in progressive photon mapping and show that it often outperforms alternative approaches in terms of image quality by a large margin.

Supplementary Material

a4-gruson-suppl.pdf (gruson.zip)
Supplemental movie, appendix, image and software files for, A Spatial Target Function for Metropolis Photon Tracing
MP4 File (tog-23.mp4)

References

[1]
T. Bashford-Rogers, K. Debattista, and A. Chalmers. 2014. Importance driven environment map sampling. IEEE Transactions on Visualization and Computer Graphics 20, 6, 907--918.
[2]
Jiating Chen, Bin Wang, and Jun-Hai Yong. 2011. Improved stochastic progressive photon mapping with Metropolis sampling. Computer Graphics Forum 30, 4, 1205--1213.
[3]
P. H. Christensen. 2003. Adjoints and importance in rendering: An overview. IEEE Transactions on Visualization and Computer Graphics 9, 3, 329--340.
[4]
David Cline, Justin Talbot, and Parris Egbert. 2005. Energy redistribution path tracing. ACM Transactions on Graphics 24, 3, 1186--1195.
[5]
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable realistic rendering with many-light methods. Computer Graphics Forum 33, 1, 88--104.
[6]
Philip Dutré and Yves Willems. 1995. Potential-driven Monte Carlo particle tracing for diffuse environments with adaptive probability density functions. In Proceedings of the Eurographics Workshop on Rendering.
[7]
Shaohua Fan, Stephen Chenney, and Yu-Chi Lai. 2005. Metropolis photon sampling with optional user guidance. In Proceedings of the Eurographics Symposium on Rendering.
[8]
Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics 31, 6, Article No. 192.
[9]
Adrien Gruson, Mickael Ribardière, Remy Cozot, and Kadi Bouatouch. 2014. Rendu progressif base Metropolis-Hasting dans des scenes a contextes topologiques multiples. Revue Electronique Francophone d’Informatique Graphique 8, 1.
[10]
Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics 28, 5, Article No. 141.
[11]
Toshiya Hachisuka and Henrik Wann Jensen. 2011. Robust adaptive photon tracing using photon path visibility. ACM Transactions on Graphics 30, 5, Article No. 114.
[12]
Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed Metropolis light transport. ACM Transactions on Graphics 33, 4, 100:1--100:10.
[13]
Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Transactions on Graphics 31, 6, Article No. 191.
[14]
Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved half vector space light transport. Computer Graphics Forum 34, 4, 65--74.
[15]
W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97--109.
[16]
Jared Hoberock and John C. Hart. 2010. Arbitrary importance functions for Metropolis light transport. Computer Graphics Forum 29, 6, 1993--2003.
[17]
Wenzel Jakob. 2010. Mitsuba Renderer. Retrieved September 23, 2016, from http://www.mitsuba-renderer.org.
[18]
Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics 31, 4, Article No. 58.
[19]
Wenzel Jakob, Christian Regg, and Wojciech Jarosz. 2011. Progressive expectation-maximization for hierarchical volumetric photon mapping. Computer Graphics Forum 30, 4, 1287--1297.
[20]
Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Rendering Techniques’95. Eurographics. Springer, 326--335.
[21]
Anton S. Kaplanyan and Carsten Dachsbacher. 2013a. Adaptive progressive photon mapping. ACM Transactions on Graphics 32, 2, Article No. 16.
[22]
Anton S. Kaplanyan and Carsten Dachsbacher. 2013b. Path space regularization for holistic and robust light transport. Computer Graphics Forum 32, 2, 63--72.
[23]
Csaba Kelemen, László Szirmay-Kalos, Gyorgy Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport. Computer Graphics Forum 21, 3531--540.
[24]
Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. 2009. Replica exchange light transport. Computer Graphics Forum 28, 8, 2330--2342.
[25]
Eric P. Lafortune and Yves D. Willems. 1993. Bi-directional path tracing. In Proceedings of the Compugraphics Conference (Compugraphics’93). 145--153.
[26]
Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain Metropolis light transport. ACM Transactions on Graphics 32, 4, 95:1--95:12.
[27]
Radford M. Neal. 1996. Sampling from multimodal distributions using tempered transitions. Statistics and Computing 6, 4, 353--366.
[28]
Ingmar Peter and Georg Pietrek. 1998. Importance driven construction of photon maps. In Rendering Techniques’98. Eurographics. Springer, 269--80.
[29]
Jeffrey S. Rosenthal. 2011. Optimal proposal distributions and adaptive MCMC. In Handbook of Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. L. Jones, and X.-Li Meng (Eds.). Chapman 8 Hall/CRC.
[30]
Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM Transactions on Graphics 31, 6, Article No. 195.
[31]
Benjamin Segovia, Jean Claude Iehl, and Bernard Péroche. 2007. Metropolis instant radiosity. Computer Graphics Forum 26, 3, 425--434.
[32]
Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University, Stanford, CA.
[33]
Eric Veach and Leonidas J. Guibas. 1997. Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’97). 65--76.
[34]
Edgar Velázquez-Armendáriz, Zhao Dong, Bruce Walter, and Donald P. Greenberg. 2015. Complex luminaires: Illumination and appearance rendering. ACM Transactions on Graphics 34, 3, Article No. 26.
[35]
Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics 33, 4, Article No. 101.
[36]
Quan Zheng and Chang-Wen Zheng. 2015. Visual importance-based adaptive photon tracing. Visual Computer 31, 6--8, 1001--1010.
[37]
Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum 34, 2, 667--681.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 36, Issue 1
February 2017
165 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2996392
Issue’s Table of Contents
© 2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 November 2016
Accepted: 01 June 2016
Revised: 01 March 2016
Received: 01 October 2015
Published in TOG Volume 36, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Global illumination
  2. Markov chain Monte Carlo
  3. Metropolis-Hastings algorithm
  4. light transport simulation
  5. progressive photon mapping

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Czech Science Foundation
  • Charles University in Prague
  • SVV-2016-260332

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Variance-aware path guidingACM Transactions on Graphics10.1145/3386569.339244139:4(151:1-151:12)Online publication date: 12-Aug-2020
  • (2020)Survey of Markov Chain Monte Carlo Methods in Light Transport SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.288045526:4(1821-1840)Online publication date: 1-Apr-2020
  • (2020)Progressive Photon Elimination With a Status TreeIEEE Access10.1109/ACCESS.2020.29665498(12735-12744)Online publication date: 2020
  • (2019)Optimal multiple importance samplingACM Transactions on Graphics10.1145/3306346.332300938:4(1-14)Online publication date: 12-Jul-2019
  • (2019)Progressive Transient Photon BeamsComputer Graphics Forum10.1111/cgf.1360038:6(19-30)Online publication date: 19-Feb-2019
  • (2018)Selective guided sampling with complete light transport pathsACM Transactions on Graphics10.1145/3272127.327503037:6(1-14)Online publication date: 4-Dec-2018
  • (2018)Path tracing in productionACM SIGGRAPH 2018 Courses10.1145/3214834.3214864(1-79)Online publication date: 12-Aug-2018
  • (2018)Efficient Caustic Rendering with Lightweight Photon MappingComputer Graphics Forum10.1111/cgf.1348137:4(133-142)Online publication date: 20-Jul-2018
  • (2017)Reversible Jump Metropolis Light Transport Using Inverse MappingsACM Transactions on Graphics10.1145/313270437:1(1-12)Online publication date: 10-Oct-2017

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media