Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3002151.3002164acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Evaluating the perception of semi-transparent structures in direct volume rendering techniques

Published: 28 November 2016 Publication History

Abstract

Direct volume rendering (DVR) provides the possibility to visualize volumetric data sets as they occur in many scientific disciplines. A key benefit of DVR is that semi-transparency can be facilitated in order to convey the complexity of the visualized data. Unfortunately, semi-transparency introduces new challenges in spatial comprehension of the visualized data, as the ambiguities inherent to semi-transparent representations affect spatial comprehension. Accordingly, many visualization techniques have been introduced to enhance the spatial comprehension of DVR images. In this paper, we conduct a user evaluation in which we compare standard DVR with five visualization techniques which have been proposed to enhance the spatial comprehension of DVR images. In our study, we investigate the perceptual performance of these techniques and compare them against each other to find out which technique is most suitable for different types of data and purposes. In order to do this, a large-scale user study was conducted with 300 participants who completed a number of micro-tasks designed such that the aggregated feedback gives us insight on how well these techniques aid the end user to perceive depth and shape of objects. Within this paper we discuss the tested techniques, present the conducted study and analyze the retrieved results.

Supplementary Material

ZIP File (a9-englund.zip)
Supplemental files.

References

[1]
Ahmed, N., Zheng, Z., and Mueller, K. 2012. Human computation in visualization: Using purpose driven games for robust evaluation of visualization algorithms. IEEE TVCG 18, 12.
[2]
Appel, A., Rohlf, F. J., and Stein, A. J. 1979. The haloed line effect for hidden line elimination., vol. 13. ACM.
[3]
Baer, A., Gasteiger, R., Cunningham, D., and Preim, B. 2011. Perceptual evaluation of ghosted view techniques for the exploration of vascular structures and embedded flow. Computer Graphics Forum 30, 3, 811--820.
[4]
Bair, A., and House, D. 2007. Grid with a view: Optimal texturing for perception of layered surface shape. IEEE TVCG 13, 6, 1656--1663.
[5]
Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., and Pfister, H. 2013. What makes a visualization memorable? IEEE TVCG 19, 12.
[6]
Boucheny, C., Bonneau, G.-P., Droulez, J., Thibault, G., and Ploix, S. 2009. A perceptive evaluation of volume rendering techniques. ACM TAP 5, 4, 23:1--23:24.
[7]
Bousseau, A., O'shea, J. P., Durand, F., Ramamoorthi, R., and Agrawala, M. 2013. Gloss perception in painterly and cartoon rendering. ACM TOG 32, 2, 18:1--18:13.
[8]
Bruckner, S., and Gröller, M. 2007. Enhancing depth-perception with flexible volumetric halos. IEEE TVCG 13, 6.
[9]
Bruckner, S., Grimm, S., Kanitsar, A., and Gröller, M. E. 2005. Illustrative context-preserving volume rendering. In EG/IEEE VGTC Symposium on Visualization, 69--76.
[10]
Burns, M., Klawe, J., Rusinkiewicz, S., Finkelstein, A., and DeCarlo, D. 2005. Line drawings from volume data. ACM TOG 24, 3, 512--518.
[11]
Chan, M.-Y., Wu, Y., and Qu, H. 2007. Quality enhancement of direct volume rendered images. In Proceedings of the Sixth Eurographics / IEEE VGTC Conference on Volume Graphics.
[12]
Chan, M.-Y., Wu, Y., Mak, W.-H., Chen, W., and Qu, H. 2009. Perception-based transparency optimization for direct volume rendering. IEEE TVCG 15, 6, 1283--1290.
[13]
Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., and Singh, M. 2009. How well do line drawings depict shape? ACM TOG 28, 3.
[14]
de Moura Pinto, F., and Dal Sasso Freitas, C. M. 2011. Illustrating volume data sets and layered models with importance-aware composition. Vis. Comput. 27, 10, 875--886.
[15]
Díaz, J., and Vázquez, P. 2010. Depth-enhanced maximum intensity projection. In IEEE/EG Volume Graphics, 93--100.
[16]
Englund, R., Kottravel, S., and Ropinski, T. 2016. A crowdsourcing system for integrated and reproducible evaluation in scientific visualization. In IEEE Pacific Visualization Symposium, IEEE, 40--47.
[17]
Fleming, R. W., and Bülthoff, H. H. 2005. Low-level image cues in the perception of translucent materials. ACM TAP 2, 3.
[18]
Fulvio, J. M., Singh, M., and Maloney, L. T. 2006. Combining achromatic and chromatic cues to transparency. Journal of Vision 6, 8, 1.
[19]
Gleicher, M., Correll, M., Nothelfer, C., and Franconeri, S. 2013. Perception of average value in multiclass scatterplots. IEEE TVCG 19, 12, 2316--2325.
[20]
Grosset, A., Schott, M., Bonneau, G.-P., and Hansen, C. D. 2013. Evaluation of depth of field for depth perception in dvr. In IEEE Pacific Visualization Symposium, 81--88.
[21]
Heer, J., and Bostock, M. 2010. Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In ACM Human Factors in Computing Systems (CHI), 203--212.
[22]
Hibbard, B. 2000. Confessions of a visualization skeptic. In ACM SIGGRAPH, 11--13.
[23]
Interrante, V., Fuchs, H., and Pizer, S. M. 1997. Conveying the 3d shape of smoothly curving transparent surfaces via texture. IEEE TVCG 3, 2, 98--117.
[24]
Jönsson, D., Sundén, E., Ynnerman, A., and Ropinski, T. 2014. A survey of volumetric illumination techniques for interactive volume rendering. Computer Graphics Forum 33, 1.
[25]
Kersten-Oertel, M., Chen, S. J.-S., and Collins, D. 2014. An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery. IEEE TVCG 20, 3.
[26]
Kim, S.-H., Yun, H., and Yi, J. S. 2012. How to filter out random clickers in a crowdsourcing-based study? In Proceedings of the 2012 BELIV Workshop, ACM, 15.
[27]
Koenderink, J. J., Van Doorn, A. J., and Kappers, A. M. 1992. Surface perception in pictures. Perception & Psychophysics 52, 5, 487--496.
[28]
Langer, M. S., and Bülthoff, H. H. 1999. Depth discrimination from shading under diffuse lighting. Perception 29, 6.
[29]
Lindemann, F., and Ropinski, T. 2011. About the influence of illumination models on image comprehension in direct volume rendering. IEEE TVCG 17, 12, 1922--1931.
[30]
Luft, T., Colditz, C., and Deussen, O. 2006. Image enhancement by unsharp masking the depth buffer. ACM TOG 25, 3, 1206--1213.
[31]
Mora, B., and Ebert, D. S. 2004. Instant volumetric understanding with order-independent volume rendering. Computer Graphics Forum 23, 3, 489--497.
[32]
Nagy, Z., and Klein, R. 2004. High-quality silhouette illustration for texture-based volume rendering. Journal of WSCG 12, 2, 301--308.
[33]
Quinn, A. J., and Bederson, B. B. 2011. Human computation: a survey and taxonomy of a growing field. In ACM Human Factors in Computing Systems (CHI), 1403--1412.
[34]
Rheingans, P., and Ebert, D. 2001. Volume illustration: Non-photorealistic rendering of volume models. IEEE TVCG 7, 3.
[35]
Ropinski, T., Steinicke, F., and Hinrichs, K. 2006. Visually Supporting Depth Perception in Angiography Imaging. In Smart Graphics, 93--104.
[36]
Schott, M., Pascal Grosset, A., Martin, T., Pegoraro, V., Smith, S. T., and Hansen, C. D. 2011. Depth of field effects for interactive direct volume rendering. Computer Graphics Forum 30, 3, 941--950.
[37]
Singh, M., and Anderson, B. L. 2002. Toward a perceptual theory of transparency. Psychological review 109, 3, 492.
[38]
Solteszova, V., Turkay, C., Price, M., and Viola, I. 2012. A perceptual-statistics shading model. IEEE TVCG 18, 12.
[39]
Sundén, E., Steneteg, P., Kottravel, S., Jönsson, D., Englund, R., Falk, M., and Ropinski, T., 2015. Inviwo - An Extensible, Multi-Purpose Visualization Framework. Poster at IEEE Vis.
[40]
Svakhine, N., Ebert, D., and Andrews, W. 2009. Illustration-inspired depth enhanced volumetric medical visualization. 77--86.
[41]
Thompson, W., Fleming, R., Creem-Regehr, S., and Stefanucci, J. K. 2011. Visual Perception from a Computer Graphics Perspective. A K Peters.
[42]
Viola, I., Kanitsar, A., and Gröller, M. E. 2005. Importance-driven feature enhancement in volume visualization. IEEE TVCG 11, 4, 408--418.
[43]
Šoltészová, V., Patel, D., and Viola, I. 2011. Chromatic shadows for improved perception. In Proceedings of Non-Photorealistic Animation and Rendering, 105--115.
[44]
Ware, C. 2012. Information visualization: perception for design. Elsevier.
[45]
Zheng, L., Wu, Y., and Ma, K.-L. 2013. Perceptually-based depth-ordering enhancement for direct volume rendering. IEEE TVCG 19, 3, 446--459.

Cited By

View all
  • (2023)Working with Forensic Practitioners to Understand the Opportunities and Challenges for Mixed-Reality Digital AutopsyProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580768(1-15)Online publication date: 19-Apr-2023
  • (2023)Generating Pseudo Random Volumes for Volumetric Research2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)10.1109/ISMAR-Adjunct60411.2023.00061(266-270)Online publication date: 16-Oct-2023
  • (2022)Real-Time Denoising of Volumetric Path Tracing for Direct Volume RenderingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303768028:7(2734-2747)Online publication date: 1-Jul-2022
  • Show More Cited By

Index Terms

  1. Evaluating the perception of semi-transparent structures in direct volume rendering techniques

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SA '16: SIGGRAPH ASIA 2016 Symposium on Visualization
      November 2016
      129 pages
      ISBN:9781450345477
      DOI:10.1145/3002151
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 November 2016

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. depth perception
      2. transparency
      3. volume rendering

      Qualifiers

      • Research-article

      Conference

      SA '16
      Sponsor:
      SA '16: SIGGRAPH Asia 2016
      December 5 - 8, 2016
      Macau

      Acceptance Rates

      Overall Acceptance Rate 178 of 869 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)25
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 01 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Working with Forensic Practitioners to Understand the Opportunities and Challenges for Mixed-Reality Digital AutopsyProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580768(1-15)Online publication date: 19-Apr-2023
      • (2023)Generating Pseudo Random Volumes for Volumetric Research2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)10.1109/ISMAR-Adjunct60411.2023.00061(266-270)Online publication date: 16-Oct-2023
      • (2022)Real-Time Denoising of Volumetric Path Tracing for Direct Volume RenderingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303768028:7(2734-2747)Online publication date: 1-Jul-2022
      • (2020)Inviwo — A Visualization System with Usage Abstraction LevelsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.292063926:11(3241-3254)Online publication date: 1-Nov-2020
      • (2018)Quantitative and Qualitative Analysis of the Perception of Semi‐Transparent Structures in Direct Volume RenderingComputer Graphics Forum10.1111/cgf.1332037:6(174-187)Online publication date: 9-Jan-2018
      • (2018)Immersive Analytics: Time to Reconsider the Value of 3D for Information VisualisationImmersive Analytics10.1007/978-3-030-01388-2_2(25-55)Online publication date: 16-Oct-2018

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media