Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A two-scale microfacet reflectance model combining reflection and diffraction

Published: 20 July 2017 Publication History

Abstract

Adequate reflectance models are essential for the production of photorealistic images. Microfacet reflectance models predict the appearance of a material at the macroscopic level based on microscopic surface details. They provide a good match with measured reflectance in some cases, but not always. This discrepancy between the behavior predicted by microfacet models and the observed behavior has puzzled researchers for a long time. In this paper, we show that diffraction effects in the micro-geometry provide a plausible explanation. We describe a two-scale reflectance model, separating between geometry details much larger than wavelength and those of size comparable to wavelength. The former model results in the standard Cook-Torrance model. The latter model is responsible for diffraction effects. Diffraction effects at the smaller scale are convolved by the micro-geometry normal distribution. The resulting two-scale model provides a very good approximation to measured reflectances.

Supplementary Material

ZIP File (a66-holzschuch.zip)
Supplemental files.
MP4 File (papers-0190.mp4)

References

[1]
M. Ashikhmin and S. Premože. 2007. Distribution-based BRDFs. University of Utah. (2007). http://www.cs.utah.edu/~premoze/dbrdf/.
[2]
M. M. Bagher, J. Snyder, and D. Nowrouzezahrai. 2016. A Non-Parametric Factor Microfacet Model for Isotropic BRDFs. ACM Trans. Graph. 36, 5, Article 159 (July 2016), 16 pages.
[3]
M. M. Bagher, C. Soler, and N. Holzschuch. 2012. Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics Forum 31, 4 (June 2012).
[4]
P. Beckmann and A. Spizzichino. 1987. The scattering of electromagnetic waves from rough surfaces. Artech House.
[5]
A. Brady, J. Lawrence, P. Peers, and W. Weimer. 2014. genBRDF: Discovering New Analytic BRDFs with Genetic Programming. ACM Trans. Graph. 33, 4, Article 114 (July 2014), 11 pages.
[6]
B. Burley. 2012. Physically-Based Shading at Disney. In Siggraph course: Practical Physically Based Shading in Film and Game Production, Stephen Hill and Stephen McAuley (Eds.). ACM. https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
[7]
S. D. Butler, S. E. Nauyoks, and M. A. Marciniak. 2015a. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space. Opt. Lett. 40, 11 (Jun 2015), 2445--2448.
[8]
S. D. Butler, S. E. Nauyoks, and M. A. Marciniak. 2015b. Experimental measurement and analysis of wavelength-dependent properties of the BRDF. Proc. SPIE 9611, Imaging Spectrometry XX (2015).
[9]
E. L. Church and P. Z. Takacs. 1986. Statistical And Signal Processing Concepts In Surface Metrology. (1986).
[10]
R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (1982), 7--24.
[11]
S. Ergun, S. Önel, and A. Ozturk. 2016. A General Micro-flake Model for Predicting the Appearance of Car Paint. In Eurographics Symposium on Rendering - EI & I.
[12]
J. E. Harvey. 1975. Light-Scattering Characteristics of Optical Surface. Ph.D. Dissertation. University of Arizona. http://www.dtic.mil/dtic/tr/fulltext/u2/a095132.pdf Adviser: R. V. Shack.
[13]
J. E. Harvey, S. Schröder, N. Choi, and A. Duparré. 2012. Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles. Optical Engineering 51, 1 (2012).
[14]
X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg. 1991. A Comprehensive Physical Model for Light Reflection. Computer Graphics (ACM SIGGRAPH '91 Proceedings) 25, 4 (July 1991), 175--186.
[15]
E. Heitz. 2014a. Multi-scale appearance for realistic and efficient rendering of complex surfaces. Ph.D. Dissertation. Université de Grenoble. https://tel.archives-ouvertes.fr/tel-01073518
[16]
E. Heitz. 2014b. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques 3, 2 (June 2014), 32--91. http://jcgt.org/published/0003/02/03/
[17]
E. Heitz, J. Hanika, E. d'Eon, and C. Dachsbacher. 2016. Multiple-Scattering Microfacet BSDFs with the Smith Model. ACM Trans. Graph. (Proc. SIGGRAPH 2016) 35, 4, Article 58 (July 2016).
[18]
B. J. Hoenders, E. Jakeman, H. P. Baltes, and B. Steinle. 1979. K Correlations and Facet Models in Diffuse Scattering. Optica Acta: International Journal of Optics 26, 10 (1979), 1307--1319.
[19]
N. Holzschuch and R. Pacanowski. 2015a. A physically accurate reflectance model combining reflection and diffraction. Research Report RR-8807. INRIA. https://hal.inria.fr/hal-01224702
[20]
N. Holzschuch and R. Pacanowski. 2015b. Identifying diffraction effects in measured reflectances. In Eurographics Workshop on Material Appearance Modeling. https://hal.inria.fr/hal-01170614
[21]
N. Holzschuch and R. Pacanowski. 2016. A Physically-Based Reflectance Model Combining Reflection and Diffraction. Research Report RR-8964. INRIA. https://hal.inria.fr/hal-01386157
[22]
W. Jakob, E. D'Eon, O. Jakob, and S. Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4 (2014).
[23]
H. W. Jensen, S. Marschner, M. Levoy, and P. Hanrahan. 2001. A Practical Model for Subsurface Light Transport. In SIGGRAPH 2001. 511--518.
[24]
A. Krywonos. 2006. Predicting Surface Scatter using a Linear Systems Formulation of Non-Paraxial Scalar Diffraction. Ph.D. Dissertation. University of Central Florida. http://etd.fcla.edu/CF/CFE0001446/Krywonos_Andrey_200612_PhD.pdf Adviser:J. E. Harvey.
[25]
E. P. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg. 1997. Non-linear approximation of reflectance functions. In SIGGRAPH '97. 117--126.
[26]
M. I. A. Lourakis. 2004. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/. (July 2004).
[27]
J. Löw, J. Kronander, A. Ynnerman, and J. Unger. 2012. BRDF models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. 31, 1, Article 9 (Feb. 2012), 14 pages.
[28]
W. Matusik, H. Pfister, M. Brand, and L. McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003).
[29]
A. Ngan, F. Durand, and W. Matusik. 2005. Experimental Analysis of BRDF Models. In Eurographics Symposium on Rendering.
[30]
B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5 (Sept. 1967).
[31]
J. Stam. 1999. Diffraction Shaders. In SIGGRAPH '99. ACM, 101--110.
[32]
K. E. Torrance and E. M. Sparrow. 1967. Theory for Off-Specular Reflection From Roughened Surfaces. J. Opt. Soc. Am. 57, 9 (Sept. 1967), 1105--1112.
[33]
T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5 (1975), 531--536.
[34]
C. L. Vernold and J. E. Harvey. 1998. A modified Beckmann-Kirchhoff scattering theory for nonparaxial angles. Proc. SPIE 3426, Scattering and Surface Roughness II (1998), 51--56.
[35]
B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet models for refraction through rough surfaces. In Eurographics Symposium on Rendering. 195--206.
[36]
A. Weidlich and A. Wilkie 2007 Arbitrarily layered micro-facet surfaces. In GRAPHITE '07. 171--178.

Cited By

View all
  • (2024)Geometric attenuation function analysis based on V-grooved surfacesApplied Optics10.1364/AO.50953763:5(1204)Online publication date: 2-Feb-2024
  • (2024)A Generalized Ray Formulation For Wave-Optical Light TransportACM Transactions on Graphics10.1145/368790243:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Separation of Reflection Components for Measured Spectral BRDFsProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670953(1-9)Online publication date: 3-Jun-2024
  • Show More Cited By

Index Terms

  1. A two-scale microfacet reflectance model combining reflection and diffraction

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 4
    August 2017
    2155 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3072959
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 July 2017
    Published in TOG Volume 36, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. BRDF
    2. diffraction
    3. material models

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)66
    • Downloads (Last 6 weeks)8
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Geometric attenuation function analysis based on V-grooved surfacesApplied Optics10.1364/AO.50953763:5(1204)Online publication date: 2-Feb-2024
    • (2024)A Generalized Ray Formulation For Wave-Optical Light TransportACM Transactions on Graphics10.1145/368790243:6(1-15)Online publication date: 19-Dec-2024
    • (2024)Separation of Reflection Components for Measured Spectral BRDFsProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670953(1-9)Online publication date: 3-Jun-2024
    • (2024)A Non-parametric Factor Representation and Editing for Measured Anisotropic Spectral BRDFsProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670951(1-10)Online publication date: 3-Jun-2024
    • (2024)A Fully-correlated Anisotropic Micrograin BSDF ModelACM Transactions on Graphics10.1145/365822443:4(1-14)Online publication date: 19-Jul-2024
    • (2024)Rendering diffraction Phenomena on rough surfaces in Virtual RealityProceedings of the 30th ACM Symposium on Virtual Reality Software and Technology10.1145/3641825.3689516(1-2)Online publication date: 9-Oct-2024
    • (2024)Reflection modeling of rough metal surfaces using statistical theoryOptical Engineering10.1117/1.OE.63.11.11410263:11Online publication date: 1-Nov-2024
    • (2024)Neural Histogram‐Based Glint Rendering of Surfaces With Spatially Varying RoughnessComputer Graphics Forum10.1111/cgf.1515743:4Online publication date: 24-Jul-2024
    • (2024)Practical Appearance Model for Foundation CosmeticsComputer Graphics Forum10.1111/cgf.1514843:4Online publication date: 24-Jul-2024
    • (2024)Two-Stage Optimization for Fitting Parameters of Measured Isotropic Spectral BRDFs2024 Nicograph International (NicoInt)10.1109/NICOInt62634.2024.00016(36-40)Online publication date: 14-Jun-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media