Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Embeddability in the 3-Sphere Is Decidable

Published: 23 January 2018 Publication History

Abstract

We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, that is, an essential curve in the boundary of X bounding a disk in S3 \ X with length bounded by a computable function of the number of tetrahedra of X.

References

[1]
D. Bachman. 2010. Topological index theory for surfaces in 3-manifolds. Geom. Topol. 14, 1 (2010), 585--609.
[2]
D. Bachman. 2013. Stabilizing and destabilizing heegaard splittings of sufficiently complicated 3-manifolds. Math. Ann. 355, 2 (2013), 697--728.
[3]
D. Bachman, R. Derby-Talbot, and E. Sedgwick. 2013. Almost normal surfaces with boundary. In Geometry and Topology Down Under. Contemp. Math., Vol. 597. Amer. Math. Soc., Providence, RI, 177--194.
[4]
R. H. Bing. 1959. An alternative proof that 3-manifolds can be triangulated. Ann. of Math. (2) 69 (1959), 37--65.
[5]
R. H. Bing. 1983. The Geometric Topology of 3-Manifolds. American Mathematical Society Colloquium Publications, Vol. 40. American Mathematical Society, Providence, RI.
[6]
B. A. Burton, A. de Mesmay, and U. Wagner. 2016. Finding non-orientable surfaces in 3-manifolds. Discrete Comput. Geom. 58, 4 (2016), 871--888.
[7]
M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, and U. Wagner. 2014. Computing all maps into a sphere. J. ACM 61, 3 (2014), 17.
[8]
M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, and U. Wagner. 2014. Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM J. Computing 43, 5 (2014), 1728--1780.
[9]
A. Coward and M. Lackenby. 2014. An upper bound on Reidemeister moves. Amer. J. Math. 136, 4 (2014), 1023--1066.
[10]
B. Farb and D. Margalit. 2011. A Primer on Mapping Class Groups. Princeton University Press, Princeton, NJ.
[11]
R. H. Fox. 1948. On the imbedding of polyhedra in 3-space. Ann. of Math. (2) 49 (1948), 462--470.
[12]
J. Geelen, T. Huynh, and R. B. Richter. 2013. Explicit bounds for graph minors. (2013). Preprint, http://arxiv.org/abs/1305.1451.
[13]
C. McA. Gordon and J. Luecke. 1989. Knots are determined by their complements. J. Amer. Math. Soc. 2, 2 (1989), 371--415.
[14]
J. L. Gross and R. H. Rosen. 1979. A linear-time planarity algorithm for 2-complexes. J. ACM 20 (1979), 611--617.
[15]
W. Haken. 1961. Theorie der Normalflächen. Acta Math. 105 (1961), 245--375.
[16]
J. Hass and G. Kuperberg. 2012. The Complexity of Recognizing the 3-Sphere. Report 24/2012. (2012).
[17]
J. Hass, J. C. Lagarias, and N. Pippenger. 1999. The computational complexity of knot and link problems. J. ACM 46, 2 (1999), 185--211.
[18]
A. E. Hatcher. 1982. On the boundary curves of incompressible surfaces. Pacific J. Math. 99, 2 (1982), 373--377.
[19]
G. Hemion. 1979. On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds. Acta Math. 142, 1--2 (1979), 123--155.
[20]
J. Hempel. 1976. 3-Manifolds. Ann. of Math. Studies, Vol. 86. Princeton University Press, Princeton, N. J.
[21]
S. V. Ivanov. 2008. The computational complexity of basic decision problems in 3-dimensional topology. Geom. Dedicata 131 (2008), 1--26.
[22]
W. Jaco. 1980. Lectures on Three-Manifold Topology. CBMS Regional Conference Series in Mathematics, Vol. 43. American Mathematical Society, Providence, R.I.
[23]
W. Jaco and U. Oertel. 1984. An algorithm to decide if a 3-manifold is a Haken manifold. Topology 23, 2 (1984), 195--209.
[24]
W. Jaco, J. H. Rubinstein, and E. Sedgwick. 2009. Finding planar surfaces in knot- and link-manifolds. J. Knot Theory Ramifications 18, 3 (2009), 397--446.
[25]
W. Jaco and J. H. Rubinstein. 2003. 0-Efficient triangulations of 3-manifolds. J. Differential Geom. 65, 1 (2003), 61--168.
[26]
W. Jaco and E. Sedgwick. 2003. Decision problems in the space of Dehn fillings. Topology 42, 4 (2003), 845--906.
[27]
W. Jaco and J. L. Tollefson. 1995. Algorithms for the complete decomposition of a closed 3-manifold. Illinois J. Math. 39, 3 (1995), 358--406.
[28]
M. Krčál, J. Matoušek, and F. Sergeraert. 2013. Polynomial-time homology for simplicial Eilenberg-MacLane spaces. J. Foundat. of Comput. Mathematics 13 (2013), 935--963.
[29]
G. Kuperberg. 2014. Knottedness is in NP, modulo GRH. Adv. Math. 256 (2014), 493--506.
[30]
M. Lackenby. 2015. A polynomial upper bound on Reidemeister moves. Ann. of Math. (2) 182, 2 (2015), 491--564.
[31]
M. Lackenby. 2016. The efficient certification of knottedness and Thurston norm. (2016). Preprint, arXiv:1604.00290.
[32]
M. Lackenby. 2016. Elementary knot theory. (2016). Preprint, https://arxiv.org/abs/1604.03778.
[33]
T. Li. 2010. Thin position and planar surfaces for graphs in the 3-sphere. Proc. Amer. Math. Soc. 138, 1 (2010), 333--340.
[34]
J. Matoušek, E. Sedgwick, M. Tancer, and U. Wagner. 2016. Untangling two systems of noncrossing curves. Israel J. Math. 212, 1 (2016), 37--79.
[35]
J. Matoušek, M. Tancer, and U. Wagner. 2011. Hardness of embedding simplicial complexes in Rd. J. Eur. Math. Soc. 13, 2 (2011), 259--295.
[36]
J. Matoušek. 2003. Using the Borsuk--Ulam theorem. Springer-Verlag, Berlin.
[37]
S. V. Matveev. 1997. Classification of sufficiently large 3-manifolds. Uspekhi Mat. Nauk 52, 5(317) (1997), 147--174. Translation in Russian Math. Surveys 52 (1997), no. 5, 1029--1055.
[38]
A. Mijatović. 2005. Simplical structures of knot complements. Math. Res. Lett. 12, 5--6 (2005), 843--856.
[39]
L. Neuwirth. 1968. An algorithm for the construction of 3-manifolds from 2-complexes. Proc. Cambridge Philos. Soc. 64 (1968), 603--613.
[40]
C. Papakyriakopoulos. 1943. A new proof for the invariance of the homology groups of a complex (in Greek). Bull. Soc. Math. Grèce 22 (1943), 1--154.
[41]
J. Renegar. 1992. On the computational complexity and geometry of the first-order theory of the reals. I, II, III. J. Symbolic Comput. 13, 3 (1992), 255--299,301--327, 329--352.
[42]
C. P. Rourke and B. J. Sanderson. 1972. Introduction to Piecewise-Linear Topology. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 69. Springer-Verlag, New York.
[43]
J. H. Rubinstein. 1995. An algorithm to recognize the 3-sphere. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, 601--611.
[44]
S. Schleimer. 2011. Sphere recognition lies in NP. In Low-Dimensional and Symplectic Topology. Proc. Sympos. Pure Math., Vol. 82. Amer. Math. Soc., Providence, RI, 183--213.
[45]
H. Schubert. 1949. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 3 (1949), 57--104.
[46]
A. B. Skopenkov. 1995. A generalization of neuwirth’s theorem on thickening 2-dimensional polyhedral. Math. Notes 58, 5 (1995), 1244--1247.
[47]
M. Stocking. 2000. Almost normal surfaces in 3-manifolds. Trans. Amer. Math. Soc. 352 (2000), 171--207.
[48]
A. Thompson. 1994. Thin position and the recognition problem for S3. Math. Res. Lett. 1, 5 (1994), 613--630.
[49]
D. Tonkonog. 2011. Embedding 3-manifolds with boundary into closed 3-manifolds. Topology Appl. 158, 9 (2011), 1157--1162.
[50]
Martin Čadek, Marek Krčál, and Lukáš Vokřínek. 2017. Algorithmic solvability of the lifting-extension problem. Discrete Comput. Geom. 57, 4 (2017), 915--965.
[51]
R. Zentner. 2016. Integer homology 3-spheres admit irreducible representations in . (2016). Preprint, arXiv:1605.08530.

Cited By

View all
  • (2023)Adjacency Graphs of Polyhedral SurfacesDiscrete & Computational Geometry10.1007/s00454-023-00537-671:4(1429-1455)Online publication date: 18-Oct-2023
  • (2022)Atomic Embeddability, Clustered Planarity, and ThickenabilityJournal of the ACM10.1145/350226469:2(1-34)Online publication date: 31-Jan-2022
  • (2020)Atomic embeddability, clustered planarity, and thickenabilityProceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3381089.3381264(2876-2895)Online publication date: 5-Jan-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 65, Issue 1
February 2018
209 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/3155102
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 January 2018
Accepted: 01 April 2017
Revised: 01 February 2017
Received: 01 March 2014
Published in JACM Volume 65, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3-manifolds
  2. Computational topology
  3. embeddability
  4. normal surfaces

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)2
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Adjacency Graphs of Polyhedral SurfacesDiscrete & Computational Geometry10.1007/s00454-023-00537-671:4(1429-1455)Online publication date: 18-Oct-2023
  • (2022)Atomic Embeddability, Clustered Planarity, and ThickenabilityJournal of the ACM10.1145/350226469:2(1-34)Online publication date: 31-Jan-2022
  • (2020)Atomic embeddability, clustered planarity, and thickenabilityProceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3381089.3381264(2876-2895)Online publication date: 5-Jan-2020
  • (2020)Embeddability in R3 is NP-hardJournal of the ACM10.1145/339659367:4(1-29)Online publication date: 4-Jun-2020
  • (2020)Invariants of Graph Drawings in the PlaneArnold Mathematical Journal10.1007/s40598-019-00128-5Online publication date: 13-Feb-2020

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media