Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
tutorial

A Tutorial on Canonical Correlation Methods

Published: 22 November 2017 Publication History

Abstract

Canonical correlation analysis is a family of multivariate statistical methods for the analysis of paired sets of variables. Since its proposition, canonical correlation analysis has, for instance, been extended to extract relations between two sets of variables when the sample size is insufficient in relation to the data dimensionality, when the relations have been considered to be non-linear, and when the dimensionality is too large for human interpretation. This tutorial explains the theory of canonical correlation analysis, including its regularised, kernel, and sparse variants. Additionally, the deep and Bayesian CCA extensions are briefly reviewed. Together with the numerical examples, this overview provides a coherent compendium on the applicability of the variants of canonical correlation analysis. By bringing together techniques for solving the optimisation problems, evaluating the statistical significance and generalisability of the canonical correlation model, and interpreting the relations, we hope that this article can serve as a hands-on tool for applying canonical correlation methods in data analysis.

References

[1]
S. Akaho. 2001. A kernel method for canonical correlation analysis. In Proceedings of the International Meeting of the Psychometric Society (IMPS’01).
[2]
Md A. Alam, M. Nasser, and K. Fukumizu. 2008. Sensitivity analysis in robust and kernel canonical correlation analysis. In Proceedings of the 11th International Conference on Computer and Information Technology (ICCIT’08). IEEE, 399--404.
[3]
T. W. Anderson. 2003. An introduction to statistical multivariate analysis. John Wiley 8 Sons. xiv+704.
[4]
G. Andrew, R. Arora, J. Bilmes, and K. Livescu. 2013. Deep canonical correlation analysis. In Proceedings of the International Conference on Machine Learning. 1247--1255.
[5]
C. Archambeau and F. R. Bach. 2009. Sparse probabilistic projections. In Adv. Neural Info. Process. Syst. 73--80.
[6]
C. Archambeau, N. Delannay, and M. Verleysen. 2006. Robust probabilistic projections. In Proceedings of the 23rd International Conference on Machine Learning. ACM, 33--40.
[7]
S. Arlot, A. Celisse, and others. 2010. A survey of cross-validation procedures for model selection. Stat. Surveys 4 (2010), 40--79.
[8]
F. Bach, R. Jenatton, J. Mairal, G. Obozinski et al. 2011. Convex optimization with sparsity-inducing norms. Optim. Mach. Learn. 5 (2011).
[9]
F. R. Bach and M. I. Jordan. 2002. Kernel independent component analysis. J. Mach. Learn. Res. 3, Jul (2002), 1--48.
[10]
F. R. Bach and M. I. Jordan. 2005. A probabilistic interpretation of canonical correlation analysis. (2005).
[11]
M. S. Bartlett. 1938. Further aspects of the theory of multiple regression. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 34. Cambridge University Press, 33--40.
[12]
M. S. Bartlett. 1941. The statistical significance of canonical correlations. Biometrika 32, 1 (1941), 29--37.
[13]
B. Baur and S. Bozdag. 2015. A canonical correlation analysis-based dynamic Bayesian network prior to infer gene regulatory networks from multiple types of biological data. J. Comput. Biol. 22, 4 (2015), 289--299.
[14]
Å Björck and G. H. Golub. 1973. Numerical methods for computing angles between linear subspaces. Math. Comput. 27, 123 (1973), 579--594.
[15]
M. B. Blaschko, C. H. Lampert, and A. Gretton. 2008. Semi-supervised Laplacian regularization of kernel canonical correlation analysis. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 133--145.
[16]
M. W. Browne. 2000. Cross-validation methods. J. Math. Psychol. 44, 1 (2000), 108--132.
[17]
E. Burg and J. Leeuw. 1983. Non-linear canonical correlation. Brit. J. Math. Stat. Psychol. 36, 1 (1983), 54--80.
[18]
J. Cai. 2013. The distance between feature subspaces of kernel canonical correlation analysis. Math. Comput. Model. 57, 3 (2013), 970--975.
[19]
L. Cao, Z. Ju, J. Li, R. Jian, and C Jiang. 2015. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J. Neurosci. Methods 253 (2015), 10--17.
[20]
J. D. Carroll. 1968. Generalization of canonical correlation analysis to three or more sets of variables. In Proceedings of the 76th Annual Convention of the American Psychological Association, Vol. 3. 227--228.
[21]
B. Chang, U. Krüger, R. Kustra, and J. Zhang. 2013. Canonical correlation analysis based on Hilbert-Schmidt independence criterion and centered kernel target alignment. In Proceedings of the International Conference on Machine Learning (ICML’13). 316--324.
[22]
X. Chen, S. Chen, H. Xue, and X. Zhou. 2012. A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data. Pattern Recogn. 45, 5 (2012), 2005--2018.
[23]
X. Chen, C. He, and H. Peng. 2014. Removal of muscle artifacts from single-channel EEG based on ensemble empirical mode decomposition and multiset canonical correlation analysis. J. Appl. Math. vol. 2014. Article ID 261347, 10 pages.
[24]
X. Chen, H. Liu, and J. G. Carbonell. 2012. Structured sparse canonical correlation analysis. In Proceedings of the International Conference on Artificial Intelligence and Statistics. 199--207.
[25]
A. Cichonska, J. Rousu, P. Marttinen, A. J. Kangas, P. Soininen, T. Lehtimäki, O. T. Raitakari, M-R Järvelin, V. Salomaa, M. Ala-Korpela, and others. 2016. metaCCA: Summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics 32, 13 (2016), 1981–1989.
[26]
N. Cristianini, J Shawe-Taylor, and H. Lodhi. 2002. Latent semantic kernels. J. Intell. Info. Syst. 18, 2--3 (2002), 127--152.
[27]
R. Cruz-Cano and MLT Lee. 2014. Fast regularized canonical correlation analysis. Comput. Stat. Data Anal. 70 (2014), 88--100.
[28]
J. Dauxois and G. M. Nkiet. 1997. Canonical analysis of two Euclidean subspaces and its applications. Linear Algebra Appl. 264 (1997), 355--388.
[29]
D. L. Donoho and I. M. Johnstone. 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Stat. Assoc. 90, 432 (1995), 1200--1224.
[30]
R. B. Dunham and D. J. Kravetz. 1975. Canonical correlation analysis in a predictive system. J. Exper. Edu. 43, 4 (1975), 35--42.
[31]
C. Eckart and G. Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1, 3 (1936), 211--218.
[32]
B. Efron. 1979. Computers and the theory of statistics: Thinking the unthinkable. SIAM Rev. 21, 4 (1979), 460--480.
[33]
L. M. Ewerbring and F. T. Luk. 1989. Canonical correlations and generalized SVD: Applications and new algorithms. In Proceedings of the 32nd Annual Technical Symposium. International Society for Optics and Photonics, 206--222.
[34]
J. Fang, D. Lin, S. C. Schulz, Z. Xu, V. D. Calhoun, and Y-P Wang. 2016. Joint sparse canonical correlation analysis for detecting differential imaging genetics modules. Bioinformatics 32, 22 (2016), 3480--3488.
[35]
Y. Fujikoshi and L. G. Veitch. 1979. Estimation of dimensionality in canonical correlation analysis. Biometrika 66, 2 (1979), 345--351.
[36]
K. Fukumizu, F. R. Bach, and A. Gretton. 2007. Statistical consistency of kernel canonical correlation analysis. J. Mach. Learn. Res. 8, Feb (2007), 361--383.
[37]
C. Fyfe and P. L. Lai. 2000. Canonical correlation analysis neural networks. In Proceedings of the 15th International Conference on Pattern Recognition, Vol. 2. IEEE, 977--980.
[38]
G. H. Golub and C. F. Van Loan. 2012. Matrix Computations. Vol. 3. JHU Press.
[39]
G. H. Golub and H. Zha. 1995. The canonical correlations of matrix pairs and their numerical computation. In Linear Algebra for Signal Processing. Springer, 27--49.
[40]
I. González, S. Déjean, PGP Martin, O. Gonçalves, P. Besse, and A. Baccini. 2009. Highlighting relationships between heterogeneous biological data through graphical displays based on regularized canonical correlation analysis. J. Biol. Syst. 17, 02 (2009), 173--199.
[41]
B. K. Gunderson and R. J. Muirhead. 1997. On estimating the dimensionality in canonical correlation analysis. J. Multivar. Anal. 62, 1 (1997), 121--136.
[42]
D. R. Hardoon, J. Mourao-Miranda, M. Brammer, and J. Shawe-Taylor. 2007. Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage 37, 4 (2007), 1250--1259.
[43]
D. R. Hardoon and J. Shawe-Taylor. 2009. Convergence analysis of kernel canonical correlation analysis: Theory and practice. Mach. Learn. 74, 1 (2009), 23--38.
[44]
D. R. Hardoon and J. Shawe-Taylor. 2011. Sparse canonical correlation analysis. Mach. Learn. 83, 3 (2011), 331--353.
[45]
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. 2004. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 16, 12 (2004), 2639--2664.
[46]
M. J. R. Healy. 1957. A. rotation method for computing canonical correlations. Math. Comp. 11, 58 (1957), 83--86.
[47]
C. Heij and B. Roorda. 1991. A modified canonical correlation approach to approximate state space modelling. In Proceedings of the 30th IEEE Conference on Decision and Control. IEEE, 1343--1348.
[48]
A. E. Hoerl and R. W. Kennard. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 1 (1970), 55--67.
[49]
J. W. Hooper. 1959. Simultaneous equations and canonical correlation theory. Econometr.: J. Econometr. Soc. (1959), 245--256.
[50]
C. E. Hopkins. 1969. Statistical analysis by canonical correlation: A computer application.Health Serv. Res. 4, 4 (1969), 304.
[51]
P. Horst. 1961. Relations among sets of measures. Psychometrika 26, 2 (1961), 129--149.
[52]
H. Hotelling. 1935. The most predictable criterion.J. Edu. Psychol. 26, 2 (1935), 139.
[53]
H. Hotelling. 1936. Relations between two sets of variates. Biometrika 28, 3/4 (1936), 321--377.
[54]
W. W. Hsieh. 2000. Nonlinear canonical correlation analysis by neural networks. Neural Netw. 13, 10 (2000), 1095--1105.
[55]
I. Huopaniemi, T. Suvitaival, J. Nikkilä, M. Orešič, and S. Kaski. 2010. Multivariate multi-way analysis of multi-source data. Bioinformatics 26, 12 (2010), i391--i398.
[56]
A. Kabir, R. D. Merrill, A. A. Shamim, R. D. W. Klemn, A. B. Labrique, P. Christian, K. P. West Jr, and M. Nasser. 2014. Canonical correlation analysis of infant’s size at birth and maternal factors: A study in rural northwest Bangladesh. PloS One 9, 4 (2014), e94243.
[57]
M. Kang, B. Zhang, X. Wu, C. Liu, and J. Gao. 2013. Sparse generalized canonical correlation analysis for biological model integration: A genetic study of psychiatric disorders. In Proceedings of the 2013 35th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC’13). IEEE, 1490--1493.
[58]
J. R. Kettenring. 1971. Canonical analysis of several sets of variables. Biometrika (1971), 433--451.
[59]
A. Kimura, M. Sugiyama, T. Nakano, H. Kameoka, H. Sakano, E. Maeda, and K. Ishiguro. 2013. SemiCCA: Efficient semi-supervised learning of canonical correlations. Info. Media Technol. 8, 2 (2013), 311--318.
[60]
A. Klami and S. Kaski. 2007. Local dependent components. In Proceedings of the 24th International Conference on Machine Learning. ACM, 425--432.
[61]
A. Klami, S. Virtanen, and S. Kaski. 2012. Bayesian exponential family projections for coupled data sources. arXiv:1203.3489 (2012).
[62]
A. Klami, S. Virtanen, and S. Kaski. 2013. Bayesian canonical correlation analysis. J. Mach. Learn. Res. 14, Apr (2013), 965--1003.
[63]
D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas. 2014. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminformat. 6, 1 (2014), 1.
[64]
P. L. Lai and C. Fyfe. 1999. A neural implementation of canonical correlation analysis. Neural Netw. 12, 10 (1999), 1391--1397.
[65]
P. L. Lai and C. Fyfe. 2000. Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst. 10, 05 (2000), 365--377.
[66]
N. B. Larson, G. D. Jenkins, M. C. Larson, R. A. Vierkant, T. A. Sellers, C. M. Phelan, J. M. Schildkraut, R. Sutphen, P. P. D. Pharoah, S. A. Gayther, and others. 2014. Kernel canonical correlation analysis for assessing gene--gene interactions and application to ovarian cancer. Eur. J. Hum. Genet. 22, 1 (2014), 126--131.
[67]
S. C. Larson. 1931. The shrinkage of the coefficient of multiple correlation.J. Edu. Psychol. 22, 1 (1931), 45.
[68]
H.-S. Lee. 2007. Canonical correlation analysis using small number of samples. Commun. Stat.—Simul. Comput. 36, 5 (2007), 973--985.
[69]
S. E. Leurgans, R. A. Moyeed, and B. W. Silverman. 1993. Canonical correlation analysis when the data are curves. J. Roy. Stat. Soc. Ser. B (Methodol.) (1993), 725--740.
[70]
H. Lindsey, J. T. Webster, and S. Halpern. 1985. Canonical correlation as a discriminant tool in a periodontal problem. Biometr. J. 27, 3 (1985), 257--264.
[71]
P. Marttinen, J. Gillberg, A. Havulinna, J. Corander, and S. Kaski. 2013. Genome-wide association studies with high-dimensional phenotypes. Stat. Appl. Genet. Mol. Biol. 12, 4 (2013), 413--431.
[72]
T. Melzer, M. Reiter, and H. Bischof. 2001. Nonlinear feature extraction using generalized canonical correlation analysis. In Proceedings of the International Conference on Artificial Neural Networks. Springer, 353--360.
[73]
T. Melzer, M. Reiter, and H. Bischof. 2003. Appearance models based on kernel canonical correlation analysis. Pattern Recogn. 36, 9 (2003), 1961--1971.
[74]
W. Meredith. 1964. Canonical correlations with fallible data. Psychometrika 29, 1 (1964), 55--65.
[75]
M. S. Monmonier and F. E. Finn. 1973. Improving the interpretation of geographical canonical correlation models. Profess. Geogr. 25, 2 (1973), 140--142.
[76]
M. Nakanishi, Y. Wang, Y.-T. Wang, and T.-P. Jung. 2015. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PloS One 10, 10 (2015), e0140703.
[77]
R. M. Neal. 2012. Bayesian Learning for Neural Networks. Vol. 118. Springer Science 8 Business Media.
[78]
T. Ogura, Y. Fujikoshi, and T. Sugiyama. 2013. A variable selection criterion for two sets of principal component scores in principal canonical correlation analysis. Commun. Stat.-Theory Methods 42, 12 (2013), 2118--2135.
[79]
E. Parkhomenko, D. Tritchler, and J. Beyene. 2007. Genome-wide sparse canonical correlation of gene expression with genotypes. In BMC Proceedings, Vol. 1. BioMed Central Ltd, S119.
[80]
P. Rai and H. Daume. 2009. Multi-label prediction via sparse infinite CCA. In Advances in Neural Information Processing Systems. 1518--1526.
[81]
J. Rousu, D. D. Agranoff, O. Sodeinde, J. Shawe-Taylor, and D. Fernandez-Reyes. 2013. Biomarker discovery by sparse canonical correlation analysis of complex clinical phenotypes of tuberculosis and malaria. PLoS Comput. Biol. 9, 4 (2013), e1003018.
[82]
Y. Saad. 2011. Numerical Methods for Large Eigenvalue Problems. Vol. 158. SIAM.
[83]
T. Sakurai. 2009. Asymptotic expansions of test statistics for dimensionality and additional information in canonical correlation analysis when the dimension is large. J. Multivar. Anal. 100, 5 (2009), 888--901.
[84]
B. K. Sarkar and C. Chakraborty. 2015. DNA pattern recognition using canonical correlation algorithm. J. Biosci. 40, 4 (2015), 709--719.
[85]
S. V. Schell and W. A. Gardner. 1995. Programmable canonical correlation analysis: A flexible framework for blind adaptive spatial filtering. IEEE Trans. Signal Process. 43, 12 (1995), 2898--2908.
[86]
B. Schölkopf, A. Smola, and K.-R. Müller. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 5 (1998), 1299--1319.
[87]
J. A. Seoane, C. Campbell, I. N. M. Day, J. P. Casas, and T. R. Gaunt. 2014. Canonical correlation analysis for gene-based pleiotropy discovery. PLoS Comput. Biol. 10, 10 (2014), e1003876.
[88]
J. Shawe-Taylor and N. Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge University Press.
[89]
X.-B. Shen, Q.-S. Sun, and Y.-H. Yuan. 2013. Orthogonal canonical correlation analysis and its application in feature fusion. In Proceedinsg of the 2013 16th International Conference on Information Fusion (FUSION’13). IEEE, 151--157.
[90]
C. Soneson, H. Lilljebjörn, T. Fioretos, and M. Fontes. 2010. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis. BMC Bioinformat. 11, 1 (2010), 1.
[91]
L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. Smola. 2010. Hilbert space embeddings of hidden Markov models. In Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML’10). Johannes Fürnkranz and Thorsten Joachims (eds). Omnipress, USA, 991–998.
[92]
Y. Song, P. J. Schreier, D. Ramírez, and T. Hasija. 2016. Canonical correlation analysis of high-dimensional data with very small sample support. Signal Process. 128 (2016), 449--458.
[93]
M. Stone. 1974. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. Ser. B (Methodol.) (1974), 111--147.
[94]
M. J. Sullivan. 1982. Distribution of edaphic diatoms in a missisippi salt marsh: A canonical correlation analysis. J. Phycol. 18, 1 (1982), 130--133.
[95]
A. Tenenhaus, C. Philippe, and V. Frouin. 2015. Kernel generalized canonical correlation analysis. Comput. Stat. Data Anal. 90 (2015), 114--131.
[96]
A. Tenenhaus, C. Philippe, V. Guillemot, K.-A. Le Cao, J. Grill, and V. Frouin. 2014. Variable selection for generalized canonical correlation analysis. Biostatistics (2014), kxu001.
[97]
A. Tenenhaus and M. Tenenhaus. 2011. Regularized generalized canonical correlation analysis. Psychometrika 76, 2 (2011), 257--284.
[98]
C. J. F. Ter Braak. 1990. Interpreting canonical correlation analysis through biplots of structure correlations and weights. Psychometrika 55, 3 (1990), 519--531.
[99]
R. Tibshirani. 1996. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) (1996), 267--288.
[100]
X. M. Tu. 1991. A bootstrap resampling scheme for using the canonical correlation technique in rank estimation. J. Chemometr. 5, 4 (1991), 333--343.
[101]
X. M. Tu, D. S. Burdick, D. W. Millican, and L. B. McGown. 1989. Canonical correlation technique for rank estimation of excitation-emission matrixes. Anal. Chem. 61, 19 (1989), 2219--2224.
[102]
V. Uurtio, M. Bomberg, K. Nybo, M. Itävaara, and J. Rousu. 2015. Canonical correlation methods for exploring microbe-environment interactions in deep subsurface. In Proceedings of the International Conference on Discovery Science. Springer, 299--307.
[103]
J. P. Van de Geer. 1984. Linear relations amongk sets of variables. Psychometrika 49, 1 (1984), 79--94.
[104]
T. Van Gestel, J. A. K. Suykens, J. De Brabanter, B. De Moor, and J. Vandewalle. 2001. Kernel canonical correlation analysis and least-squares support vector machines. In Proceedings of the International Conference on Artificial Neural Networks. Springer, 384--389.
[105]
H. D. Vinod. 1976. Canonical ridge and econometrics of joint production. J. Econometr. 4, 2 (1976), 147--166.
[106]
S. Waaijenborg, P. C. Verselewel de Witt Hamer, and A. H. Zwinderman. 2008. Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat. Appl. Genet. Mol. Biol. 7, 1 (2008), 1–29.
[107]
C. Wang. 2007. Variational Bayesian approach to canonical correlation analysis. IEEE Trans. Neural Netw. 18, 3 (2007), 905--910.
[108]
D. Wang, L. Shi, D. S. Yeung, and E. C. C. Tsang. 2005. Nonlinear canonical correlation analysis of fMRI signals using HDR models. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 5896--5899.
[109]
G. C. Wang, N. Lin, and B. Zhang. 2013. Dimension reduction in functional regression using mixed data canonical correlation analysis. Stat. Interface 6 (2013), 187--196.
[110]
D. S. Watkins. 2004. Fundamentals of Matrix Computations. Vol. 64. John Wiley 8 Sons.
[111]
F. V. Waugh. 1942. Regressions between sets of variables. Econometr. J. Econometr. Soc. (1942), 290--310.
[112]
D. M. Witten, R. Tibshirani, and T. Hastie. 2009. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics (2009), kxp008.
[113]
K. W. Wong, P. C. W. Fung, and C. C. Lau. 1980. Study of the mathematical approximations made in the basis-correlation method and those made in the canonical-transformation method for an interacting Bose gas. Phys. Rev. A 22, 3 (1980), 1272.
[114]
T. Yamada and T. Sugiyama. 2006. On the permutation test in canonical correlation analysis. Comput. Stat. Data Anal. 50, 8 (2006), 2111--2123.
[115]
H. Yamamoto, H. Yamaji, E. Fukusaki, H. Ohno, and H. Fukuda. 2008. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting. Biochem. Eng. J. 40, 2 (2008), 199--204.
[116]
Y.-H. Yuan, Q.-S. Sun, and H.-W. Ge. 2014. Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recogn. 47, 3 (2014), 1411--1424.
[117]
Y.-H. Yuan, Q.-S. Sun, Q. Zhou, and D.-S. Xia. 2011. A novel multiset integrated canonical correlation analysis framework and its application in feature fusion. Pattern Recogn. 44, 5 (2011), 1031--1040.
[118]
B. Zhang, J. Hao, G. Ma, J. Yue, and Z. Shi. 2014. Semi-paired probabilistic canonical correlation analysis. In Proceedings of the International Conference on Intelligent Information Processing. Springer, 1--10.
[119]
H. Zou and T. Hastie. 2005. Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67, 2 (2005), 301--320.

Cited By

View all
  • (2024)Theoretical and Experimental Approaches to Study of Biological Objects by Mathematical Methods Using the Example of Hormone Production in the Thyroid GlandSSP Modern Pharmacy and Medicine10.53933/sspmpm.v4i3.1534:3(1-14)Online publication date: 10-Jul-2024
  • (2024)Emphasizing symbolic capital: its superior influence on the association between family socioeconomic status and adolescent subjective well-being uncovered by a large-scale multivariate network analysisFrontiers in Psychology10.3389/fpsyg.2024.133559515Online publication date: 17-Jul-2024
  • (2024)TO THE CHARACTERIZATION OF MORPHOLOGICAL AND FUNCTIONAL FEATURES OF OF FOLLICULAR THYROCYTES UNDER CONDITIONS OF ALIMENTARY IODINE DEFICIENCYBulletin of Problems Biology and Medicine10.29254/2523-4110-2024-2-173/addition-46-481:2(46)Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 50, Issue 6
November 2018
752 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3161158
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 November 2017
Accepted: 01 August 2017
Revised: 01 July 2017
Received: 01 February 2017
Published in CSUR Volume 50, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Canonical correlation
  2. kernel methods
  3. regularisation
  4. sparsity

Qualifiers

  • Tutorial
  • Research
  • Refereed

Funding Sources

  • Academy of Finland
  • PhD studentship
  • EPSRC
  • C-PLACID Project
  • Fundação para a Ciência e a Tecnologia

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)269
  • Downloads (Last 6 weeks)32
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Theoretical and Experimental Approaches to Study of Biological Objects by Mathematical Methods Using the Example of Hormone Production in the Thyroid GlandSSP Modern Pharmacy and Medicine10.53933/sspmpm.v4i3.1534:3(1-14)Online publication date: 10-Jul-2024
  • (2024)Emphasizing symbolic capital: its superior influence on the association between family socioeconomic status and adolescent subjective well-being uncovered by a large-scale multivariate network analysisFrontiers in Psychology10.3389/fpsyg.2024.133559515Online publication date: 17-Jul-2024
  • (2024)TO THE CHARACTERIZATION OF MORPHOLOGICAL AND FUNCTIONAL FEATURES OF OF FOLLICULAR THYROCYTES UNDER CONDITIONS OF ALIMENTARY IODINE DEFICIENCYBulletin of Problems Biology and Medicine10.29254/2523-4110-2024-2-173/addition-46-481:2(46)Online publication date: 2024
  • (2024)Stable biomarker discovery in multi-omics data via canonical correlation analysisPLOS ONE10.1371/journal.pone.030992119:9(e0309921)Online publication date: 9-Sep-2024
  • (2024)Extraordinarily Time- and Memory-Efficient Large-Scale Canonical Correlation Analysis in Fourier Domain: From Shallow to DeepIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2023.328278535:10(14989-15003)Online publication date: Oct-2024
  • (2024)Optimal Tracking Control of Blast Furnace Molten Iron Quality Based on Krotov's Method and Nonlinear Subspace IdentificationIEEE Transactions on Industrial Electronics10.1109/TIE.2023.332755571:8(9610-9619)Online publication date: Aug-2024
  • (2024)Efficient kernel canonical correlation analysis using Nyström approximationInverse Problems10.1088/1361-6420/ad2900Online publication date: 13-Feb-2024
  • (2024)Termitaria enhance soil and forest diversity in Deciduous Dipterocarp Forest, Northern ThailandJournal of Tropical Ecology10.1017/S026646742300034240Online publication date: 16-Apr-2024
  • (2024)Impacts of meteorology and mixing height on radioactive and stable aerosols in Bratislava, SlovakiaAtmospheric Research10.1016/j.atmosres.2024.107710311(107710)Online publication date: Dec-2024
  • (2024)Mission Statement Topic Models: Coherence, Diversity, and UtilityDigital Humanities Looking at the World10.1007/978-3-031-48941-9_12(153-166)Online publication date: 20-Apr-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media