Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Distributed (Δ +1)-Coloring in Sublogarithmic Rounds

Published: 12 April 2018 Publication History

Abstract

We give a new randomized distributed algorithm for (Δ +1)-coloring in the LOCAL model, running in O(√ log Δ)+ 2O(√log log n) rounds in a graph of maximum degree Δ. This implies that the (Δ +1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(√/log n log log n, /log Δ log log Δ)) by Kuhn, Moscibroda, and Wattenhofer [PODC’04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ +1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts.

References

[1]
N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567--583, 1986.
[2]
B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality in distributed computation. In Proc. of Symp. Foundations of Computer Science (FOCS’89), 1989.
[3]
L. Barenboim. Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic and faulty networks. In Symp. on Principles of Distributed Computing (PODC’15), 345--354, 2015.
[4]
L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic time. Journal of the ACM (JACM), 58(5):23, 2011.
[5]
L. Barenboim and M. Elkin. Distributed graph coloring: Fundamentals and recent developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1--171, 2013.
[6]
L. Barenboim, M. Elkin, and C. Gavoille. A fast network-decomposition algorithm and its applications to constant-time distributed computation. Journal of Theoretical Computer Science (2016).
[7]
L. Barenboim, M. Elkin, and F. Kuhn. Distributed (Δ + 1)-coloring in linear (in Δ) time. SIAM Journal on Computing, 43(1):72--95, 2014.
[8]
L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry breaking. Journal of the ACM (JACM), 63, 2016, Article 20.
[9]
S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto. A lower bound for the distributed Lovász local lemma. In Proc. of Symposium on Theory of Computing (STOC’16), 479--488, 2016.
[10]
Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. The complexity of distributed edge coloring with small palettes. In arXiv preprint arXiv:1708.04290, 2017.
[11]
Y.-J. Chang, T. Kopelowitz, and S. Pettie. An exponential separation between randomized and deterministic complexity in the local model. In Proc. of Foundations of Computer Science (FOCS’16), 615--624. IEEE, 2016.
[12]
Y.-J. Chang and S. Pettie. A time hierarchy theorem for the LOCAL model. In Proc. of Symposium on Foundations of Computer Science (FOCS’17), 2017.
[13]
I. Chlamtac and S. Kutten. A spatial reuse TDMA/FDMA for mobile multi-hop radio networks. In Proc. of the Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’85). Technology: Emerging or Converging, 389--394 vol. 1, 1985.
[14]
K.-M. Chung, S. Pettie, and H.-H. Su. Distributed algorithms for the Lovász local lemma and graph coloring. Journal of Distributed Computing, 30(4):261--280, 2017.
[15]
I. Cidon and M. Sidi. Distributed assignment algorithms for multihop packet radio networks. IEEE Transactions on Computers, 38(10):1353--1361, 1989.
[16]
D. Dubhashi, D. A. Grable, and A. Panconesi. Near-optimal, distributed edge colouring via the nibble method. Journal of Theoretical Computer Science (TCS), 203(2):225--251, Aug. 1998.
[17]
M. Elkin, S. Pettie, and H.-H. Su. (2 Δ − 1)-edge-coloring is much easier than maximal matching in the distributed setting. In Symp. on Discrete Algorithms (SODA’15), 355--370. SIAM, 2015.
[18]
A. Ephremides and T. V. Truong. Scheduling broadcasts in multihop radio networks. IEEE Transactions on Communications, 38(4):456--460, 1990.
[19]
M. Fischer and M. Ghaffari. Sublogarithmic distributed algorithms for Lovász local lemma with implications on complexity hierarchies. In Proceedings 31st International Symposium on Distributed Computing (DISC’17), 18, 2017.
[20]
P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In Proc. of Foundations of Computer Science (FOCS’16), 625--634. IEEE, 2016.
[21]
M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16), 270--277, 2016.
[22]
M. Ghaffari and C. Lymouri. Simple and near-optimal distributed coloring for sparse graphs. In arXiv preprint arXiv:1708.06275, 2017.
[23]
A. V. Goldberg and S. A. Plotkin. Parallel (Δ + 1)-coloring of constant-degree graphs. Information Processing Letters, 25(4):241--245, 1987.
[24]
A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM Journal of Discrete Mathematics, 1(4):434--446, 1988.
[25]
M. Göös, J. Hirvonen, and J. Suomela. Linear-in-Δ lower bounds in the local model. In Proc. of Symposium on Principles of Distributed Computing (PODC’14), 86--95, 2014.
[26]
D. A. Grable and A. Panconesi. Nearly optimal distributed edge coloring in O(log log n) rounds. Journal of Random Structures 8 Algorithms, 10(3):385--405, 1997.
[27]
D. A. Grable and A. Panconesi. Fast distributed algorithms for Brooks--Vizing colorings. Journal of Algorithms, 37(1):85--120, 2000.
[28]
D. Hefetz, F. Kuhn, Y. Maus, and A. Steger. Polynomial lower bound for distributed graph coloring in a weak local model. In Proc. of International Symposium on Distributed Computing (DISC’16), 99--113. Springer, 2016.
[29]
J. Hirvonen and J. Suomela. Distributed maximal matching: Greedy is optimal. In Proc. of Symposium on Principles of Distributed Computing (PODC’12), 165--174, 2012.
[30]
Ö. Johansson. 1999. Simple distributed Δ +1-coloring of graphs. Information Processing Letters 70 (1999), 229--232.
[31]
K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in Õ(&sqrt; log n) bit rounds. In Proc. of International Parallel and Distributed Processing Symposium (IPDPS’06), 2006.
[32]
F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper bounds. Journal of the ACM (JACM), 63(2):17, 2016.
[33]
F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In Symp. on Principles of Distributed Computing (PODC’06), 2006.
[34]
N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193--201, 1992.
[35]
N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441--454, 1993.
[36]
L. Lovász. Combinatorial Problems and Exercises. North Holland, 1979.
[37]
M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15:1036--1053, 1986.
[38]
M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica, 18(2):241--280, 1998.
[39]
M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Algorithms and Combinatorics. Springer, 2001.
[40]
M. Molloy and B. Reed. Asymptotically optimal frugal colouring. Journal of Combinatorial Theory, Series B, 100(2):226--246, 2010.
[41]
M. Molloy and B. Reed. Colouring graphs when the number of colours is almost the maximum degree. Journal of Combinatorial Theory, Series B, 109:134--195, 2014.
[42]
M. Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics, 4(3):409--412, 1991.
[43]
A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network decomposition problems. In Proc. of Symposium on Theory of Computing (STOC’92), 581--592. ACM, 1992.
[44]
A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the Chernoff--Hoeffding bounds. SIAM Journal on Computing, 26(2):350--368, 1997.
[45]
S. Pettie and H.-H. Su. Distributed coloring algorithms for triangle-free graphs. Information and Computation, 243:263--280, 2015.
[46]
R. Ramaswami and K. K. Parhi. Distributed scheduling of broadcasts in a radio network. In Proc. of the Conference of the IEEE Computer and Communications Societies (INFOCOM’89). Technology: Emerging or Converging, IEEE, 497--504, vol. 2, 1989.
[47]
B. Reed. ω, Δ, and χ. Journal of Graph Theory, 27(4):177--212, 1998.
[48]
B. Reed. A strengthening of Brooks’ theorem. Journal of Combinatorial Theory, Series B, 76(2):136--149, 1999.
[49]
J. Schneider, M. Elkin, and R. Wattenhofer. Symmetry breaking depending on the chromatic number or the neighborhood growth. Journal of Theoretical Computer Science (TCS), 509:40--50, 2013.
[50]
J. Schneider and R. Wattenhofer. A new technique for distributed symmetry breaking. In Symp. on Principles of Distributed Computing (PODC’10), 2010.
[51]
J. Schneider and R. Wattenhofer. An optimal maximal independent set algorithm for bounded-independence graphs. Journal of Distributed Computing, 22(5):349--361, 2010.
[52]
M. Szegedy and S. Vishwanathan. Locality based graph coloring. In Proc. of Symposium on Theory of Computing (STOC’93), 201--207, 1993.

Cited By

View all

Index Terms

  1. Distributed (Δ +1)-Coloring in Sublogarithmic Rounds

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 65, Issue 4
    Distributed Computing, Cryptography, Distributed Computing, Cryptography, Coding Theory, Automata Theory, Complexity Theory, Programming Languages, Algorithms, Invited Paper Foreword and Databases
    August 2018
    307 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/3208081
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 April 2018
    Accepted: 01 January 2018
    Revised: 01 November 2017
    Received: 01 June 2016
    Published in JACM Volume 65, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Distributed networks
    2. LOCAL model
    3. vertex coloring

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSF
    • AFOSR
    • MIT and University of Michigan

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)60
    • Downloads (Last 6 weeks)15
    Reflects downloads up to 22 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Distributed Graph Coloring Made EasyACM Transactions on Parallel Computing10.1145/360589610:4(1-21)Online publication date: 17-Aug-2023
    • (2023)Coloring Fast with BroadcastsProceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3558481.3591095(455-465)Online publication date: 17-Jun-2023
    • (2023)Superfast coloring in CONGEST via efficient color samplingTheoretical Computer Science10.1016/j.tcs.2023.113711948:COnline publication date: 28-Feb-2023
    • (2022)Near-optimal distributed degree+1 coloringProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520023(450-463)Online publication date: 9-Jun-2022
    • (2022)Distributed Edge Coloring in Time Polylogarithmic in ΔProceedings of the 2022 ACM Symposium on Principles of Distributed Computing10.1145/3519270.3538440(15-25)Online publication date: 20-Jul-2022
    • (2022)Overcoming Congestion in Distributed ColoringProceedings of the 2022 ACM Symposium on Principles of Distributed Computing10.1145/3519270.3538438(26-36)Online publication date: 20-Jul-2022
    • (2022)Linial for listsDistributed Computing10.1007/s00446-022-00424-y35:6(533-546)Online publication date: 1-Dec-2022
    • (2021)Distributed Graph Coloring Made EasyProceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3409964.3461804(362-372)Online publication date: 6-Jul-2021
    • (2021)Efficient randomized distributed coloring in CONGESTProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451089(1180-1193)Online publication date: 15-Jun-2021
    • (2020)Distributed $(\Delta+1)$-Coloring via Ultrafast Graph ShatteringSIAM Journal on Computing10.1137/19M124952749:3(497-539)Online publication date: 19-May-2020
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media