Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3203217.3205338acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article

Autotuning and adaptivity in energy efficient HPC systems: the ANTAREX toolbox

Published: 08 May 2018 Publication History

Abstract

Designing and optimizing applications for energy-efficient High Performance Computing systems up to the Exascale era is an extremely challenging problem. This paper presents the toolbox developed in the ANTAREX European project for autotuning and adaptivity in energy efficient HPC systems. In particular, the modules of the ANTAREX toolbox are described as well as some preliminary results of the application to two target use cases. 1

References

[1]
A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J. Cavazos. 2017. MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using Optimization Sub-Sequences and Machine Learning. ACM TACO 14, 3 (2017), 29:1--29:28.
[2]
A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. 2018. A Survey on Compiler Autotuning using Machine Learning. Comput. Surveys (2018).
[3]
A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano. 2016. COBAYN: Compiler Autotuning Framework Using Bayesian Networks. ACM TACO 13, 2, Article 21 (June 2016), 25 pages.
[4]
A. H. Ashouri, G. Palermo, J. Cavazos, and C. Silvano. 2018. Automatic Tuning of Compilers Using Machine Learning. Springer.
[5]
A. Bartolini, R. Diversi, D. Cesarini, and F. Beneventi. 2017. Self-Aware Thermal Management for High Performance Computing Processors. IEEE Design & Test (2017).
[6]
C. Beato, A. Beccari, C. Cavazzoni, S. Lorenzi, and G. Costantino. 2013. Use of experimental design to optimize docking performance: The case of ligendock, the docking module of ligen, a new de novo design program. Journal of Chemical Information and Modeling 53, 6 (2013), 1503--1517.
[7]
A. Beccari, C. Cavazzoni, C. Beato, and Gabriele G. Costantino. 2013. LiGen: a High Performance workflow for chemistry driven de novo design. Journal of Chemical Information and Modeling 53, 6 (2013), 1518--1527.
[8]
F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini. 2017. Continuous learning of HPC infrastructure models using big data analytics and in-memory processing tools. In Proc. of DATE. 1038--1043.
[9]
J. Cardoso, J. Coutinho, T. Carvalho, P. Diniz, Z. Petrov, W. Luk, and F. Gonçalves. 2016. Performance-driven instrumentation and mapping strategies using the LARA aspect-oriented programming approach. Software: Practice and Experience 46, 2 (2016), 251--287.
[10]
D. Cesarini, A. Bartolini, and L. Benini. 2017. Benefits in Relaxing the Power Capping Constraint. In Proceedings of ANDARE Workshop.
[11]
D. Cesarini, A. Bartolini, and L. Benini. 2017. Prediction horizon vs. efficiency of optimal dynamic thermal control policies in HPC nodes. In 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).
[12]
S. Cherubin and G. Agosta. 2018. libVersioningCompiler: An easy-to-use library for dynamic generation and invocation of multiple code versions. SoftwareX 7 (2018), 95 -- 100.
[13]
C. Silvano et al. 2016. The ANTAREX approach to autotuning and adaptivity for energy efficient HPC systems. In Proc. of the ACM International Conference on Computing Frontiers, CF'16. 288--293.
[14]
C. Silvano et al. 2016. AutoTuning and Adaptivity appRoach for Energy efficient eXascale HPC systems: the ANTAREX Approach. In Proc. of DATE. 1518--1527.
[15]
C. Silvano et al. 2018. ANTAREX: A DSL-based Approach to Adaptively Optimizing and Enforcing Extra-functional Properties in High Performance Computing. In Euromicro Conference on Digital System Design - DSD.
[16]
D. Gadioli, R. Nobre, P. Pinto, E. Vitali, A.H. Ashouri, G. Palermo, C. Silvano, and J. Cardoso. 2018. SOCRATES - A Seamless Online Compiler and System Runtime AutoTuning Framework for Energy-Aware Applications. In Proc. of DATE. 1149--1152.
[17]
M. Golasowski, J. Bispo, J. Martinovič, K. Slaninová, and J. Cardoso. 2017. Expressing and Applying C++ Code Transformations for the HDF5 API Through a DSL. In IFIP International Conference on Computer Information Systems and Industrial Management. 303--314.
[18]
M. Golasowski, R. Tomis, J. Martinovič, K. Slaninová, and L. Rapant. 2016. Performance evaluation of probabilistic time-dependent travel time computation. In IFIP International Conference on Computer Information Systems and Industrial Management. 377--388.
[19]
M. Golasowski R. Cmar J. Cardoso J. Bispo G. Palermo D. Gadioli J. Martinovic, K. SlaninovÃą and C. Silvano. 2016. DSL and Autotuning Tools for Code Optimization on HPC Inspired by Navigation Use Case. In SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[20]
Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41--50.
[21]
R. Nobre, L. Martins, and J. Cardoso. 2016. A Graph-Based Iterative Compiler Pass Selection and Phase Ordering Approach. (2016), 21--30.
[22]
A. Suresh, E. Rohou, and A. Seznec. 2017. Compile-Time Function Memoization. In 26th International Conference on Compiler Construction. Austin, United States.
[23]
A. Suresh, B. Narasimha Swamy, E. Rohou, and A. Seznec. 2015. Intercepting Functions for Memoization: A Case Study Using Transcendental Functions. ACM TACO 12, 2 (2015), 23.

Cited By

View all
  • (2024)A review on the decarbonization of high-performance computing centersRenewable and Sustainable Energy Reviews10.1016/j.rser.2023.114019189(114019)Online publication date: Jan-2024
  • (2023)Tunable and Portable Extreme-Scale Drug Discovery Platform at ExascaleProceedings of the 20th ACM International Conference on Computing Frontiers10.1145/3587135.3592172(272-278)Online publication date: 9-May-2023
  • (2021)Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimizationConcurrency and Computation: Practice and Experience10.1002/cpe.668334:20Online publication date: 8-Nov-2021
  • Show More Cited By
  1. Autotuning and adaptivity in energy efficient HPC systems: the ANTAREX toolbox

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CF '18: Proceedings of the 15th ACM International Conference on Computing Frontiers
    May 2018
    401 pages
    ISBN:9781450357616
    DOI:10.1145/3203217
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 May 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. DSL
    2. autotuning
    3. high-performance & power-aware computing

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CF '18
    Sponsor:
    CF '18: Computing Frontiers Conference
    May 8 - 10, 2018
    Ischia, Italy

    Acceptance Rates

    Overall Acceptance Rate 273 of 785 submissions, 35%

    Upcoming Conference

    CF '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A review on the decarbonization of high-performance computing centersRenewable and Sustainable Energy Reviews10.1016/j.rser.2023.114019189(114019)Online publication date: Jan-2024
    • (2023)Tunable and Portable Extreme-Scale Drug Discovery Platform at ExascaleProceedings of the 20th ACM International Conference on Computing Frontiers10.1145/3587135.3592172(272-278)Online publication date: 9-May-2023
    • (2021)Autotuning PolyBench benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian optimizationConcurrency and Computation: Practice and Experience10.1002/cpe.668334:20Online publication date: 8-Nov-2021
    • (2020)Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)10.1109/PMBS51919.2020.00012(61-70)Online publication date: Nov-2020
    • (2020)ComPar: Optimized Multi-compiler for Automatic OpenMP S2S ParallelizationOpenMP: Portable Multi-Level Parallelism on Modern Systems10.1007/978-3-030-58144-2_16(247-262)Online publication date: 1-Sep-2020
    • (2019)Continuous Program Optimization via Advanced Dynamic Compilation TechniquesProceedings of the 10th and 8th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and Design Tools and Architectures for Multicore Embedded Computing Platforms10.1145/3310411.3310415(1-6)Online publication date: 21-Jan-2019
    • (2019)Fixed point exploitation via compiler analyses and transformationsProceedings of the 16th ACM International Conference on Computing Frontiers10.1145/3310273.3323424(292-294)Online publication date: 30-Apr-2019
    • (2019)A Framework for Enabling OpenMP AutotuningOpenMP: Conquering the Full Hardware Spectrum10.1007/978-3-030-28596-8_4(50-60)Online publication date: 9-Aug-2019
    • (2018)An interview with Pamela WisniewskiUbiquity10.1145/33013232018:December(1-6)Online publication date: 28-Dec-2018
    • (2018)Relation Extraction Using Distant SupervisionACM Computing Surveys10.1145/324174151:5(1-35)Online publication date: 19-Nov-2018
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media