Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

A Unified Approach to Path Problems

Published: 01 July 1981 Publication History
First page of PDF

References

[1]
AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J D. The Design and Analysts of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974, pp 195-206.
[2]
AHO, A V, AND ULLMAN, J.D. Principles of Compiler Design Addison-Wesley, Reading, Mass, 1977, pp 408-517.
[3]
BACKHOUSE, R.C., AND CARRI~, B.A.Regular algebra apphed to path-f'mdmg problems. J. lnst. Math. Apphc. 15 (1975), 161-186.
[4]
Bul~cn, J.R., AND HOPCROFT, J E Triangular factonzation and inversion by fast matrix multtphcation. Math. Comput. 28 (1974), 231-236.
[5]
COUSOT, P., AND COUSOT, R. Abstract interpretation. A unified lattice model for static analysts of programs by construction or approximation of fixpoints Conf. Rec. 4th ACM Symp. on Principles of Programming Languages, Los Angeles, Calif., 1977, pp 238-252.
[6]
DIJKSTRA, E W A note on two problems in connexion with graphs Numer Math. I (1959), 269-271
[7]
FLOYD, R. Algonthm 97. Shortest path. Commun. ACM 5, 6 (June 1962), 345.
[8]
FONG, A C Generalized common subexpresstons in very high level languages Conf. Rec 4th ACM Symp on Principles of Programmmg Languages, Los Angeles, Calif, 1977, pp 48-57.
[9]
FONG, A.C., KAM, J B., AND ULLMAN, J.D. Apphcatlons of lattice algebra to loop optimization Conf. Rec. 2nd ACM Symp on Principles of Programming Languages, Palo Alto, Cahf, 1975, pp 1-9
[10]
FORD, L.R. JR., AND FULKERSON, D R. Flows m Networks. Pnnceton University Press, Princeton, N J., 1962, pp 130-134
[11]
FORSYTHE, G.E, AND MOLER, C.B. Computer Solution of Linear Algebraic Equations. Prentice-Hall, Englewood Cliffs, N.J., 1967, pp 27-36.
[12]
FREDMAN, M.L New bounds on the complexity of the shortest path problem. SlAM ~ Comput. 5 (1976), 83-89
[13]
GRAHAM, S L., AI~D WEGMAN, M A fast and usually linear algorithm for global flow analysis. J. ACM 23, 1 (Jan 1976), 172-202
[14]
HECHT, M.S. Flow Analysts of Computer Programs. Elsevier, New York, 1977
[15]
HECHT, M.S, AND ULLMAN, J.n. Flow graph reducibility SlAM ~ Comput. 1 (1972), 188-202
[16]
JOHNSON, D.B Efficient algorithms for shortest paths m sparse networks ~ A CM 24, 1 (Jan. 1977), 1-13.
[17]
KAM, J B, AND ULLMAN, J D. Global data flow analysis and tterative algorithms. J A CM 23, 1 (Jan. 1976), 158-171
[18]
KAM, J.B., AND ULLMAN, J D. Monotone data flow analysts frameworks Acta Inf 7 (1977), 305-317.
[19]
KENNEDY, K W Node hstmgs applied to data flow analysis. Conf. Rec 2nd ACM Symp. on Principles of Programming Languages, Palo Alto, Cahf, 1975, pp. 10-21
[20]
KILDALL, G A A unified approach to program optimization Conf. Rec ACM Symp on Principles of Programmmg Languages, Boston, Mass., 1973, pp 10-21.
[21]
KLEENE, S C. Representation of events in nerve nets and finite automata. In Automata Studies, C. E Shannon and J. McCarthy, Eds., Princeton University Press, Princeton, N J, 1956, pp. 3-40.
[22]
LEHMANN, D J Algebraic structures for transitive closure. Theor. Comput Sc~ 4 (1977), 59-76.
[23]
PAN, V.Y Strassen's algorithm is not optimal. Tnlinear techmque of aggregating uniting and cancelmg for constructmg fast algonthms for matrix operatmns. Proc. 19th Ann IEEE Symp on Foundations of Computer Science, Ann Arbor, Mich, 1978, pp 166-176.
[24]
ROSEN, B K. Monoids for rapid data flow analysis. SlAM J Comput. 9 (1980), 159-196
[25]
SALOMAA, A.Two complete axiom systems for the algebra of regular events. J. A CM, 1 (Jan 1966), 158-169.
[26]
SCHAEFER, M A Mathemaucal Theory of Global Program Optimization. Prentice-Hall, Englewood Cliffs, N J, 1973
[27]
STRASSEN, V.Gaussian ehmmatlon is not opttmal Numer. Math 13 (1969), 354-356.
[28]
SzAsz, G Introducuon to Lattice Theory, B. Balkay and G. T6th, Trans., Academic Press, New York, 1963, p 38--42, 59-60
[29]
TARJAN, R E.Testing flow graph reduclbihty J. Comput Syst Sct. 9 (1974), 355-365
[30]
TARJAN, R.Elteratwe algonthms for global flow analysis in Algorithms and Complexity, New Dtrecttons and Recent Results, J F Traub, Ed., Academic Press, New York, 1976, pp 91-102.
[31]
TARJAN, R E Fast algorithms for solving path problems, ~ ACM 28, 3 (July 1981), 594-614
[32]
ULLMAN, J D Fast algorithms for the elimlnaUon of common subexpresslons Acta Inf. 2 (1973), 191-213
[33]
WAGNER, R.A A shortest path algonthm for edge-sparse graphs. J A CM 23, 1 (Jan 1976), 50-57.
[34]
WARSHALL, S A theorem on Boolean matrices. J ACM 9, 1 (Jan. 1962), 11-12.
[35]
WEGBREIT, B Property extraction m well-founded property sets. IEEE Trans. Soflw Eng. 1 (1975), 270-285.

Cited By

View all
  • (2024)Polynomial Time Convergence of the Iterative Evaluation of Datalogo ProgramsProceedings of the ACM on Management of Data10.1145/36958392:5(1-19)Online publication date: 7-Nov-2024
  • (2024)Newtonian Program Analysis of Probabilistic ProgramsProceedings of the ACM on Programming Languages10.1145/36498228:OOPSLA1(305-333)Online publication date: 29-Apr-2024
  • (2024)Convergence of datalog over (Pre-) SemiringsJournal of the ACM10.1145/364302771:2(1-55)Online publication date: 10-Apr-2024
  • Show More Cited By

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 28, Issue 3
July 1981
209 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/322261
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 1981
Published in JACM Volume 28, Issue 3

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)205
  • Downloads (Last 6 weeks)33
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Polynomial Time Convergence of the Iterative Evaluation of Datalogo ProgramsProceedings of the ACM on Management of Data10.1145/36958392:5(1-19)Online publication date: 7-Nov-2024
  • (2024)Newtonian Program Analysis of Probabilistic ProgramsProceedings of the ACM on Programming Languages10.1145/36498228:OOPSLA1(305-333)Online publication date: 29-Apr-2024
  • (2024)Convergence of datalog over (Pre-) SemiringsJournal of the ACM10.1145/364302771:2(1-55)Online publication date: 10-Apr-2024
  • (2023)Exploiting the Sparseness of Control-Flow and Call Graphs for Efficient and On-Demand Algebraic Program AnalysisProceedings of the ACM on Programming Languages10.1145/36228687:OOPSLA2(1993-2022)Online publication date: 16-Oct-2023
  • (2023)BibliographyEngineering a Compiler10.1016/B978-0-12-815412-0.00023-1(793-813)Online publication date: 2023
  • (2023)Data-Flow AnalysisEngineering a Compiler10.1016/B978-0-12-815412-0.00015-2(449-516)Online publication date: 2023
  • (2022)A novel Q-learning algorithm based on improved whale optimization algorithm for path planningPLOS ONE10.1371/journal.pone.027943817:12(e0279438)Online publication date: 27-Dec-2022
  • (2022)Leveraging the Properties of mmWave Signals for 3D Finger Motion Tracking for Interactive IoT ApplicationsProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/35706136:3(1-28)Online publication date: 8-Dec-2022
  • (2022)Reachability in timed automataACM SIGLOG News10.1145/3559736.35597389:3(6-28)Online publication date: 25-Aug-2022
  • (2022)Research on Indoor Map Construction and Path Optimization of Epidemic Prevention RobotProceedings of the 7th International Conference on Cyber Security and Information Engineering10.1145/3558819.3565133(502-508)Online publication date: 23-Sep-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media