Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Decoupling simulation accuracy from mesh quality

Published: 04 December 2018 Publication History

Abstract

For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved.
We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs.
Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance.
Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary constraints or limitations of current meshing methods. By tackling mesh generation and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.

Supplementary Material

ZIP File (repository.zip)
This repository contains the scripts to regenerate the figures in the paper "Decoupling Simulation Accuracy from Mesh Quality" published in ACM Trans. on Graphics, Vol. 37(6), 2018.
The code is also available on GitHub: https://github.com/polyfem/Decoupling-Simulation-Accuracy-from-Mesh-Quality

References

[1]
B. Aksoylu, A. Khodakovsky, and P. Schröder. 2005. Multilevel Solvers for Unstructured Surface Meshes. SIAM J. Sri. Comput. 26, 4 (April 2005), 1146--1165.
[2]
G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. 2018. The deal. II Library, Version 9.0. Journal of Numerical Mathematics (2018).
[3]
I. Babuska, A. Craig, J. Mandel, and J. Pitkaranta. 1991. Efficient Preconditioning for the p-Version Finite Element Method in Two Dimensions. SIAM J. Numer. Anal. 28, 3(1991), 624--661.
[4]
I. Babuška and M. Suri. 1994. The p and h-p versions of the finite element method, basic principles and properties. SIAM review 36, 4 (1994), 578--632.
[5]
W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal. II - a general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software (TOMS) 33, 4 (2007), 24.
[6]
A. W. Bargteil and E. Cohen. 2014. Animation of deformable bodies with quadratic Bézier finite elements. ACM Transactions on Graphics (TOG) 33, 3 (2014), 27.
[7]
D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2012. State of the Art in Quad Meshing. In Eurographics STARS. Cagliari, Italy.
[8]
M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. 2006. PriMo: Coupled Prisms for Intuitive Surface Modeling. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (SGP '06). Eurographics Association, 11--20.
[9]
D. Braess. 2007. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press.
[10]
P. G. Ciarlet. 1976. Numerical analysis of the finite element method. Vol. 59. Presses de l'Université de Montreal.
[11]
P. G. Ciarlet and P. Raviart. 1972. General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Archive for Rational Mechanics and Analysis 46, 3 (1972), 177--199.
[12]
A. De Coninck, B. De Baets, D. Kourounis, F. Verbosio, O. Schenk, S. Maenhout, and J. Fostier. 2016. Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction. 203, 1 (2016), 543--555.
[13]
C. Dobrzynski. 2012. MMG3D: user guide.
[14]
A. Düster, S. Hartmann, and E. Rank. 2003. p-FEM applied to finite isotropic hyperelastic bodies. Computer Methods in Applied Mechanics and Engineering 192, 47--48 (2003), 5147--5166.
[15]
E. Edwards and R. Bridson. 2014. Detailed water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin. ACM Transactions on Graphics (TOG) 33, 4 (2014), 136.
[16]
R. D. Falgout and U. M. Yang. 2002. hypre: A Library of High Performance Preconditioners. In Computational Science --- ICCS 2002, Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 632--641.
[17]
D. Franke, A. Düster, and E. Rank. 2008. The p-version of the FEM for computational contact mechanics. PAMM 8, 1 (2008), 10271--10272.
[18]
R. Franke. 1979. A Critical Comparison of Some Methods for Interpolation of Scattered Data.
[19]
E. Grinspun, P. Krysl, and P. Schröder. 2002. CHARMS: a simple framework for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281--290.
[20]
G. Guennebaud, B.Jacob, et al. 2010. Eigen v3.
[21]
K. Hormann, K. Polthier, and A. Sheffer. 2008. Mesh Parameterization: Theory and Practice. In ACM SIGGRAPH ASIA 2008 Courses (SIGGRAPH Asia '08). ACM, New York, NY, USA, Article 12, 87 pages.
[22]
Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.
[23]
A. Jacobson, I. Baran, J. Popovic, and O. Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78-1.
[24]
W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung. 2015. Instant Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH ASIA) 34, 6 (Nov. 2015).
[25]
C. Jamin, P. Alliez, M. Yvinec, and J.-D. Boissonnat. 2015. CGALmesh: a generic framework for delaunay mesh generation. ACM Transactions on Mathematical Software (TOMS) 41, 4 (2015), 23.
[26]
P. Kaufmann, O. Wang, A. Sorkine-Hornung, O. Sorkine-Hornung, A. Smolic, and M. Gross. 2013. Finite Element Image Warping. Computer Graphics Forum (proceedings of EUROGRAPHICS) 32, 2 (2013), 31--39.
[27]
M. Kazhdan and H. Hoppe. 2013. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages.
[28]
M. Kim, G. Pons-Moll, S. Pujades, S. Bang, J. Kim, M. Black, and S.-H. Lee. 2017. Data-Driven Physics for Human Soft Tissue Animation. ACM Transactions on Graphics, (Proc. SIGGRAPH) 36, 4 (2017).
[29]
K. Kobayashi and T. Tsuchiya. 2016. Error analysis of Lagrange interpolation on tetrahedrons. arXiv preprint arXiv.1606.03918 (2016).
[30]
D. Kourounis, A. Fuchs, and O. Schenk. 2018. Towards the Next Generation of Multiperiod Optimal Power Flow Solvers. IEEE Transactions on Power Systems PP, 99 (2018), 1--10.
[31]
R. Ling, J. Huang, B. Jüttler, F. Sun, H. Bao, and W. Wang. 2014. Spectral quadrangulation with feature curve alignment and element size control. ACM Transactions on Graphics (TOG) 34, 1 (2014), 11.
[32]
T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton methods for real-time simulation of hyperelastic materials. ACM Transactions on Graphics (TOG) 36, 3 (2017), 23.
[33]
P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. 2017. Adaptive physically based models in computer graphics. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 312--337.
[34]
A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11). ACM, New York, NY, USA, Article 37, 12 pages.
[35]
W. F. Mitchell. 2013. A Collection of 2D Elliptic Problems for Testing Adaptive Grid Refinement Algorithms. Appl. Math. Comput. 220 (Sept. 2013), 350--364.
[36]
W. F. Mitchell and M. A. McClain. 2014. A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Transactions on Mathematical Software (TOMS) 41, 1 (2014), 2.
[37]
P. Musialski, C. Hafner, F. Rist, M. Birsak, M. Wimmer, and L. Kobbelt. 2016. Non-linear shape optimization using local subspace projections. ACM Transactions on Graphics (TOG) 35, 4 (2016), 87.
[38]
M. Ong. 1994. Uniform Refinement of a Tetrahedron. SIAM Journal on Scientific Computing 15, 5 (1994), 1134--1144.
[39]
A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin. 2008. Diffusion Curves: A Vector Representation for Smooth-Shaded Images. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), Vol. 27.
[40]
J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics (TOG) 34, 4 (2015), 135.
[41]
T. Pfaff, R. Narain, J. M. De Joya, and J. F. O'Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Transactions on Graphics (TOG) 33, 4 (2014), 110.
[42]
U. Pinkall and K. Polthier. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experimental Mathematics 2 (1993), 15--36.
[43]
M. Piovarči, D. I. Levin, J. Rebello, D. Chen, R. Ďurikovič, H. Pfister, W. Matusik, and P. Didyk. 2016. An interaction-aware, perceptual model for non-linear elastic objects. ACM Transactions on Graphics (TOG) 35, 4 (2016), 55.
[44]
C. Schwab. 1998. p-and hp-finite element methods: Theory and applications in solid and fluid mechanics. Oxford University Press.
[45]
M. Seiler, D. Steinemann, J. Spillmann, and M. Harders. 2011. Robust interactive cutting based on an adaptive octree simulation mesh. The Visual Computer 27, 6--8 (2011), 519--529.
[46]
J. Shewchuk. 2002. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). University of California at Berkeley 73 (2002), 137.
[47]
J. R. Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied computational geometry towards geometric engineering. Springer, 203--222.
[48]
L. Shi, Y. Yu, N. Bell, and W.-W. Feng. 2006. A Fast Multigrid Algorithm for Mesh Deformation. ACM Trans. Graph. 25, 3 (July 2006), 1108--1117.
[49]
H. Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015), 11.
[50]
T. J. Simnett, S. D. Laycock, and A. M. Day. 2009. An Edge-based Approach to Adaptively Refining a Mesh for Cloth Deformation. In TPCG. 77--84.
[51]
O. Sorkine. 2005. Laplacian Mesh Processing. In Eurographics 2005 - State of the Art Reports, Yiorgos Chrysanthou and Marcus Magnor (Eds.). The Eurographics Association.
[52]
A. Stuart, J. Levine, B. Jones, and A. Bargteil. 2013. Automatic Construction of Coarse, High-Quality Tetrahedralizations that Enclose and Approximate Surfaces for Animation. In Proceedings of the ACM SIGGRAPH Conference on Motion in Games.
[53]
K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi. 2010. Volumetric modeling with diffusion surfaces. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 180.
[54]
D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically deformable models. ACM Siggraph Computer Graphics 21, 4 (1987), 205--214.
[55]
A. Vaxman, M. Campen, O. Diamanti, D. Bommes, K. Hildebrandt, M. Ben-Chen, and D. Panozzo. 2016. Directional Field Synthesis, Design, and Processing. In SIGGRAPH ASIA 2016 Courses (SA '16). ACM, New York, NY, USA, Article 15, 30 pages.
[56]
F. Verbosio, A. D. Coninck, D. Kourounis, and O. Schenk. 2017. Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. Journal of Computational Science 22, Supplement C (2017), 99--108.
[57]
J.-H. Wang, R. Setaluri, D. L. James, and D. K. Pai. 2017. Bounce maps: an improved restitution model for real-time rigid-body impact. ACM Transactions on Graphics (TOG) 36, 4 (2017), 150.
[58]
Y. Wang, A. Jacobson, J. Barbič, and L. Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 57.
[59]
M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. In ACM Transactions on graphics (TOG), Vol. 29. ACM, 49.
[60]
C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM transactions on graphics (TOG) 27, 3 (2008), 47.
[61]
X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. 2001. Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In Computer Graphics Forum, Vol. 20. Wiley Online Library, 349--358.
[62]
H. Xiao and Z. Gimbutas. 2010. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Computers & Mathematics with Applications 59, 2 (2010), 663--676.
[63]
H. Xu and J. Barbič. 2016. Pose-Space Subspace Dynamics. ACM Trans. on Graphics (SIGGRAPH 2016) 35, 4 (2016).
[64]
Q. Zhou and A. Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint arXiv: 1605.04797 (2016).
[65]
Q. Zhou, J. Panetta, and D. Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4 (2013), 137--1.
[66]
B. Zhu, M. Skouras, D. Chen, and W. Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4, Article 120b (July 2017).
[67]
Y Zhu, E. Sifakis, J. Teran, and A. Brandt. 2010. An Efficient Multigrid Method for the Simulation of High-resolution Elastic Solids. ACM Trans. Graph. 29, 2, Article 16 (April 2010), 18 pages.

Cited By

View all
  • (2024)Digital enhancement and photogrammetric recording of La Joquera Levantine rock art (Borriol, Castelló)Virtual Archaeology Review10.4995/var.2024.1990615:30(110-122)Online publication date: 15-Jan-2024
  • (2024)Optimization of the Camellia oleifera Fruit Harvester Engine Compartment Heat Dissipation Based on Temperature Experiments and Airflow Field SimulationAgriculture10.3390/agriculture1409164014:9(1640)Online publication date: 19-Sep-2024
  • (2024)A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry ProcessingACM Transactions on Graphics10.1145/367365243:5(1-26)Online publication date: 9-Aug-2024
  • Show More Cited By

Index Terms

  1. Decoupling simulation accuracy from mesh quality

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 37, Issue 6
    December 2018
    1401 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3272127
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 December 2018
    Published in TOG Volume 37, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. P-refinement
    2. error estimates
    3. finite elements
    4. mesh quality

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)218
    • Downloads (Last 6 weeks)30
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Digital enhancement and photogrammetric recording of La Joquera Levantine rock art (Borriol, Castelló)Virtual Archaeology Review10.4995/var.2024.1990615:30(110-122)Online publication date: 15-Jan-2024
    • (2024)Optimization of the Camellia oleifera Fruit Harvester Engine Compartment Heat Dissipation Based on Temperature Experiments and Airflow Field SimulationAgriculture10.3390/agriculture1409164014:9(1640)Online publication date: 19-Sep-2024
    • (2024)A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry ProcessingACM Transactions on Graphics10.1145/367365243:5(1-26)Online publication date: 9-Aug-2024
    • (2024)Simplicits: Mesh-Free, Geometry-Agnostic Elastic SimulationACM Transactions on Graphics10.1145/365818443:4(1-11)Online publication date: 19-Jul-2024
    • (2024)Stress‐Aligned Hexahedral Lattice StructuresComputer Graphics Forum10.1111/cgf.15265Online publication date: 28-Oct-2024
    • (2024)Curved Three‐Director Cosserat Shells with Strong CouplingComputer Graphics Forum10.1111/cgf.15183Online publication date: 17-Oct-2024
    • (2024)Mesh Parameterization Meets Intrinsic TriangulationsComputer Graphics Forum10.1111/cgf.1513443:5Online publication date: 31-Jul-2024
    • (2024)A Survey on Cage‐based Deformation of 3D ModelsComputer Graphics Forum10.1111/cgf.1506043:2Online publication date: 30-Apr-2024
    • (2024)High-order elements in position-based dynamicsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03467-340:7(4737-4749)Online publication date: 1-Jul-2024
    • (2023)An Adaptive Fast-Multipole-Accelerated Hybrid Boundary Integral Equation Method for Accurate Diffusion CurvesACM Transactions on Graphics10.1145/361837442:6(1-28)Online publication date: 5-Dec-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media