Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On bubble rings and ink chandeliers

Published: 12 July 2019 Publication History

Abstract

We introduce variable thickness, viscous vortex filaments. These can model such varied phenomena as underwater bubble rings or the intricate "chandeliers" formed by ink dropping into fluid. Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold we are able to extend classical work in the dynamics of vortex filaments through inclusion of viscous drag forces. The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics. We develop and document both the underlying theory and associated practical numerical algorithms.

Supplementary Material

ZIP File (repository.zip)
We introduce variable thickness, viscous vortex filaments. These can model such varied phenomena as underwater bubble rings or the intricate "chandeliers" formed by ink dropping into fluid. Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold we are able to extend classical work in the dynamics of vortex filaments through inclusion of viscous drag forces. The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics. We develop and document both the underlying theory and associated practical numerical algorithms.
More information is available at https://www3.math.tu-berlin.de/geometrie/wp_padilla/on_bubble_rings_and_ink_chandeliers/
MP4 File (papers_225.mp4)

References

[1]
Alexis Angelidis and Fabrice Neyret. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim. ACM, 87--96.
[2]
Vladimir I. Arnold and Boris A. Khesin. 1998. Topological Methods in Hydrodynamics. Springer.
[3]
Harry Bateman. 1915. Some Recent Researches on the Motion of Fluids. Mon. Weath. R. 43, 4 (1915), 163--170.
[4]
Mikl'os Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010), 116:1--10.
[5]
Peter S. Bernard. 2006. Turbulent Flow Properties of Large-scale Vortex Systems. PNAS 103, 27 (2006), 10174--10179.
[6]
Peter S. Bernard. 2009. Vortex Filament Simulation of the Turbulent Coflowing Jet. Phys. Fluids 21, 2 (2009).
[7]
Danielis Bernoulli. 1738. Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Argentorati. For a modern account see also {Grattan-Guinness 2005} and {Darrigol and Frisch 2008}.
[8]
Jean-Baptiste Biot and Nicolas-Pierre-Antoine Savart. 1820. Note sur le Magnétisme de la pile de Volta. Annal. Chimie et Phys. 15 (1820), 222--223.
[9]
Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-Time Smoke Animation with Vortex Sheet Meshes. In Proc. Symp. Comp. Anim. Eurographics Assoc., 87--95.
[10]
J. M. Burgers. 1948. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Math. 1 (1948), 171--199.
[11]
Augustin-Louis Cauchy. 1815. Théorie de la Propagation des Ondes a la Surface d'un Fluide Pesant d'une Profondeur Indéfinie. In Oeuvres Complètes d'Augustin Cauchy. Vol. 1. Imprimerie Royale. Presented to the French Academy in 1815 (publ. 1827).
[12]
Ching Chang and Stefan G. Llewellyn Smith. 2018. The Motion of a Buoyant Vortex Filament. J. Fl. Mech. 857 (2018), R1:1--13.
[13]
M. Cheng, J. Lou, and T. T. Lim. 2013. Motion of a Bubble Ring in a Viscous Fluid. Phys. Fluids 25, 6 (2013), 067104:1--19.
[14]
Stephen Childress. 2009. An Introduction to Theoretical Fluid Dynamics. AMS.
[15]
Alexandre Joel Chorin. 1990. Hairpin Removal in Vortex Interactions. J. Comput. Phys. 91, 1 (1990), 1--21.
[16]
Alexandre Joel Chorin. 1993. Hairpin Removal in Vortex Interactions II. J. Comput. Phys. 107, 1 (1993), 1--9.
[17]
Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles Sands Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4 (2015), 149:1--9.
[18]
Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4 (2016), 78:1--12.
[19]
O. Darrigol and U. Frisch. 2008. From Newton's Mechanics to Euler's Equations. Phy. D: Nonl. Phenom. 237, 14--17 (2008), 1855--1869.
[20]
Uriel Frisch and Barbara Villone. 2014. Cauchy's almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow. Eu. Phy. J. H 39, 3 (2014), 325--351.
[21]
Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. 2004. Riemannian Geometry (3<sup>rd</sup> ed.). Springer.
[22]
S. K. Godunov. 1959. A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics. Mat. Sb. (N.S.) 47(89), 3 (1959), 271--306.
[23]
Ivor Grattan-Guinness (Ed.). 2005. Landmark Writings in Western Mathematics 1640--1940. Elsevier, Chapter Daniel Bernoulli: Hydrodynamica (G. K. Mikhailov), 131--142.
[24]
Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. 1993. Solving Ordinary Differential Equations I: Nonstiff Problems (2nd ed.). Springer.
[25]
Anton Izosimov and Boris Khesin. 2018. Vortex Sheets and Diffeomorphism Groupoids. Adv. Math. 338 (2018), 447--501.
[26]
Theodor Kaluza. 1921. Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (1921), 966--972. English translation in
[27]
Oskar Klein. 1926. Quantentheorie und Fünfdimensionale Relativitätstheorie. Z. für Phys. 37, 12 (1926), 895--906.
[28]
Eric Lauga and Thomas R. Powers. 2009. The Hydrodynamics of Swimming Microorganisms. Rep. Prog. Phys. 72 (2009), 096601:1--36.
[29]
Randall J. LeVeque. 2002. Finite-Volume Methods for Hyperbolic Problems. Cam. U. P.
[30]
Xiangyun Liao, Weixin Si, Zhiyong Yuan, Hanqiu Sun, Jing Qin, Qiong Wang, and Pheng-Ann Heng. 2018. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method. IEEE Trans. Vis. Comp. Graph. 24, 3 (2018), 1260--1273.
[31]
Christian Loeschke. 2012. On the Relaxation of a Variational Principle for the Motion of a Vortex Sheet in Perfect Fluid. Ph.D. Dissertation. Rhein. Fried.-Wilh.-Univ. Bonn.
[32]
T. S. Lundgren and W. T. Ashurst. 1989. Area-Varying Waves on Curved Vortex Tuibes with Application to Vortex Breakdown. J. Fl. Mech. 200 (1989), 283--307.
[33]
T. S. Lundgren and N. N. Mansour. 1988. Oscillations of Drops in Zero Gravity with Weak Viscous Effects. J. Fl. Mech. 194 (1988), 479--510.
[34]
T. S. Lundgren and N. N. Mansour. 1991. Vortex Ring Bubbles. J. Fl. Mech. 224 (1991), 177--196.
[35]
Jerrold Marsden and Alan Weinstein. 1983. Coadjoint Orbits, Vortices and Clebsch Variables for Incompressible Fluids. Phy. D: Nonl. Phenom. 7, 1--3 (1983), 305--323.
[36]
J. S. Marshall. 1991. A General Theory of Curved Vortices with Circular Cross-Section and Varialbe Core Area. J. Fl. Mech. 229 (1991), 311--338.
[37]
V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya. 2012. Vortex Rings: History and State of the Art. J. Math. Sc. 187, 6 (2012), 772--808.
[38]
Derek William Moore and Philip Geoffrey Saffman. 1972. The Motion of a Vortex Filament with Axial Flow. Phil. Tr. R. Soc. Lond. A 272, 1226 (1972), 403--429.
[39]
T. J. Pedley. 1968. The Toroidal Bubble. J. Fl. Mech. 32, 1 (1968), 97--112.
[40]
Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4 (2012), 112:1--8.
[41]
Bo Ren, Xu-Yun Yang, Ming C. Lin, Nils Thuerey, Matthias Teschner, and Chenfeng Li. 2018. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report. J. Comp. Sc. Tech. 33, 3 (2018), 431--451.
[42]
William B. Rogers. 1858. On the Formation of Rotating Rings by Air and Liquids under certain Conditions of Discharge. Am. J. Sc. A. 26, 77 (1858), 246--258.
[43]
Louis Rosenhead and Harold Jeffreys. 1930. The Spread of Vorticity in the Wake behind a Cylinder. Proc. R. Soc. Lond. A 127, 806 (1930), 590--612.
[44]
P. G. Saffman. 1992. Vortex Dynamics. Cam. U. P.
[45]
Karim Shariff and Anthony Leonard. 1992. Vortex Rings. Ann. Rev. Fl. Mech. 24 (1992), 235--279.
[46]
Michiko Shimokawa, Ryosei Mayumi, Taiki Nakamura, Toshiya Takami, and Hidetsugu Sakaguchi. 2016. Breakup and Deformation of a Droplet Falling in a Miscible Solution. Phys. R. E 93, 6 (2016), 062214:1--9.
[47]
Mark J. Stock, Werner J. A. Dahm, and Grétar Tryggvason. 2008. Impact of a Vortex Ring on a Density Interface using a Regularized Inviscid Vortex Sheet Method. J. Comput. Phys. 227, 21 (2008), 9021--9043. See also images at http://markjstock.com/#/chaoticescape/.
[48]
G. I. Taylor. 1953. Formation of a Vortex Ring by Giving an Impulse to a Circular Disk and then Dissolving it Away. J. Appl. Ph. 24, 1 (1953), 104--105.
[49]
J. J. Thomson. 1883. A Treatise on the Motion of Vortex Rings. Macmillan, London.
[50]
J. J. Thomson and H. F. Newall. 1886. On the Formation of Vortex Rings by Drops falling into Liquids, and some allied Phenomena. Proc. R. Soc. Lond. 39, 239--241 (1886), 417--436.
[51]
Charles Tomlinson. 1864. LXV. On a New Vareity of the Cohesion-Figures of Liquids. Lon. Edin. Dub. Phil. M. J. Sc. 27, 184 (1864), 425--432.
[52]
J. S. Turner. 1957. Buoyant Vortex Rings. Proc. R. Soc. Lond. A 239, 1216 (1957), 61--75.
[53]
Hermann von Helmholtz. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55 (1858), 25--55.
[54]
Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1--12.
[55]
G. B. Whitham. 1974. Linear and Nonlinear Waves. Wiley.
[56]
Sheila E. Widnall and Donald B. Bliss. 1971. Slender-body Analysis of the Motion and Stability of a Vortex Filament Containing an Axial Flow. J. Fl. Mech. 50, 2 (1971), 335--353.

Cited By

View all
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)Particle-Laden Fluid on Flow MapsACM Transactions on Graphics10.1145/368791643:6(1-12)Online publication date: 19-Dec-2024
  • (2024)TwisterForge: controllable and efficient animation of virtual tornadoesProceedings of the 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games10.1145/3677388.3696335(1-11)Online publication date: 21-Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 38, Issue 4
August 2019
1480 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3306346
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2019
Published in TOG Volume 38, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. differential geometry
  2. fluid simulation
  3. geodesics
  4. physical modeling
  5. vortex filaments
  6. vorticity methods

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)43
  • Downloads (Last 6 weeks)6
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)An Eulerian Vortex Method on Flow MapsACM Transactions on Graphics10.1145/368799643:6(1-14)Online publication date: 19-Dec-2024
  • (2024)Particle-Laden Fluid on Flow MapsACM Transactions on Graphics10.1145/368791643:6(1-12)Online publication date: 19-Dec-2024
  • (2024)TwisterForge: controllable and efficient animation of virtual tornadoesProceedings of the 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games10.1145/3677388.3696335(1-11)Online publication date: 21-Nov-2024
  • (2024)Lifting Directional Fields to Minimal SectionsACM Transactions on Graphics10.1145/365819843:4(1-20)Online publication date: 19-Jul-2024
  • (2024)The Impulse Particle‐In‐Cell MethodComputer Graphics Forum10.1111/cgf.1502243:2Online publication date: 24-Apr-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2023)Motion from Shape ChangeACM Transactions on Graphics10.1145/359241742:4(1-11)Online publication date: 26-Jul-2023
  • (2023)A Second‐Order Explicit Pressure Projection Method for Eulerian Fluid SimulationComputer Graphics Forum10.1111/cgf.1462741:8(95-105)Online publication date: 20-Mar-2023
  • (2023)A Current Loop Model for the Fast Simulation of FerrofluidsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321141429:12(5394-5405)Online publication date: Dec-2023
  • (2022)Research on smoke simulation with vortex sheddingPLOS ONE10.1371/journal.pone.026911417:6(e0269114)Online publication date: 16-Jun-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media