Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/335305.335330acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free access

On transformation of interactive proofs that preserve the prover's complexity

Published: 01 May 2000 Publication History
First page of PDF

References

[1]
V. Arvind and J. KObler. On resource-bounded measure and pseudorandomness. In Proceedings of the 17th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 235-249. LNCS 1346, Springer-Verlag, 1997.
[2]
L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36:254--276, 1988.
[3]
M. Bellare and S. Goldwasser. The complexity of decision versus search. SIAM J. Comput., 23(1):97-119, Feb. 1994.
[4]
M. Bellare, S. Micali, and R. Ostrovsky. The (tree) complexity of statistical zero knowledge. In Proceedings of the Twenty Second Annual A CM Symposium on Theory of Computing, pages 494--502, Baltimore, Maryland, 14--16 May 1990.
[5]
M. Ben-Or, O. Goldreich, S. Goldwasser, J. HSstad, J. Kilian, S. Micali, and P. Rogaway. Everything provable is provable in zero-knowledge. In S. Goldwasser, editor, Advances in CryptologymCRYPTO '88, volume 403 of Lecture Notes in Computer Science, pages 37-56. Springer-Verlag, 1990, 21-25 Aug. 1988.
[6]
M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to remove intractability assumptions. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 113-131, Chicago, Illinois, 2--4 May 1988.
[7]
R. B. Boppana, J. H~tstad, and S. Zachos. Does co-NP have short interactive proofs? Information Processing Letters, 25:127-132, 1987.
[8]
P. Bro Miltersen and N. Vinodchandran. Derandomizing Arthur-Merlin games using hitting sets. In 40th Annual Symposium on Foundations of Computer Sciencd, New York, NY, 17-19 Oct. 1999. IEEE.
[9]
I. Damgtrd, O. Goldreich, T. Okamoto, and A. Wigderson. Honest verifier vs. dishonest verifier in public coin zero-knowledge proofs. In Proceedings of Crypto '95, Lecture Notes in Computer Science, volume 403. Springer-Verlag, 1995.
[10]
S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with applications to public-key cryptography. Information and Control, 61(2):159--173, May 1984.
[11]
M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and soundness in interactive proof systems. In S. Micali, editor, Advances in Computing Research, volume 5, pages 429--442. JAC Press, Inc., 1989.
[12]
O. Golclreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, 33(4):792-807, Oct. 1986.
[13]
O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. A CM, 38(1 ):691-729, 1991.
[14]
O. Goldreich, A. Sahai, and S. Vadhan. Honest verifier statistical zero-knowledge equals general statistical zero-knowledge, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 399-408, Dallas, 23-26 May 1998.
[15]
O. Goldreich and S. Vadhan. Comparing entropies in statistical zero-knowledge with applications to the structure of SZK. In Proceedings of the Fourteenth Annual IEEE Conference on Computational Complexity, pages 54-73, Atlanta, GA, May 1999. IEEE Computer Society Press.
[16]
S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM J. Comput., 18(i): 186--208, February 1989.
[17]
S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. In S. Micali, editor, Advances in Computing Research, volume 5, pages 73-90. JAC Press, Inc., 1989.
[18]
J. Hfistad, R. impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4): 1364-1396, August 1999.
[19]
R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 44-61, Seattle, Washington, 15-17 May 1989.
[20]
R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 220-229, E1 Paso, Texas, 4-6 May 1997.
[21]
R. Impagliazzo and M. Yung. Direct minimum-knowledge computations (extended abstract). In C. Pomerance, editor, Advances in Cryptology--CRYPTO '87, volume 293 of Lecture Notes in Computer Science, pages 40--51. Springer-Vefiag, 1988, 16--20 Aug. 1987.
[22]
J. Kilian. Achieving zero-knowledge robustly. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology~CRYPTO '90, volume 537 of Lecture Notes in Computer Science, pages 313-325. Springer-Verlag, 1991, 1 I-15 Aug. 1990.
[23]
A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. In Proceedings of the Thirty-first Annual A CM Symposium on Theory of Computing, pages 659--667, Atlanta, 1-4 May 1999.
[24]
M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput., 17(2):373-386, Apr. 1988.
[25]
C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. ACM, 39(4):859-868, Oct. 1992.
[26]
M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff revisited (extended abstract). In Proceedings of the Twenty-Ninth Annual A CM Symposium on Theory of Computing, pages 189-199, E1 Paso, Texas, 4-6 May 1997.
[27]
N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, Oct. 1994.
[28]
T. Okamoto. On relationships between statistical zero-knowledge proofs. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 649-658, Philadelphia, Pennsylvania, 22-24 May 1996. See also preprint of full version, Oct. 1997.
[29]
R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-knowledge protocol design. In Proceedings of Eurocrypt '93, Lecture Notes in Computer Science. Springer-Verlag, 1993.
[30]
A. Sahai and S. P. Vadhan. A complete promise problem for statistical zero-knowledge. In 38th Annual Symposium on Foundations of Computer Science, pages 448--457, Miami Beach, Florida, 20-22 Oct. 1997. IEEE.
[31]
A. Shamir. IP = PSPACE. J. ACM, 39(4):869-877, Oct. 1992.
[32]
S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts institute of Technology, August 1999.

Cited By

View all
  • (2018)An Efficiency-Preserving Transformation from Honest-Verifier Statistical Zero-Knowledge to Statistical Zero-KnowledgeAdvances in Cryptology – EUROCRYPT 201810.1007/978-3-319-78372-7_3(66-87)Online publication date: 31-Mar-2018
  • (2010)Private coins versus public coins in zero-knowledge proof systemsProceedings of the 7th international conference on Theory of Cryptography10.1007/978-3-642-11799-2_35(588-605)Online publication date: 9-Feb-2010
  • (2006)Zero knowledge with efficient proversProceedings of the thirty-eighth annual ACM symposium on Theory of Computing10.1145/1132516.1132559(287-295)Online publication date: 21-May-2006
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '00: Proceedings of the thirty-second annual ACM symposium on Theory of computing
May 2000
756 pages
ISBN:1581131844
DOI:10.1145/335305
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 2000

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Arthur-Merlin games
  2. interactive proof systems
  3. pseudorandom permutations
  4. zero-knowledge proofs

Qualifiers

  • Article

Conference

STOC00
Sponsor:

Acceptance Rates

STOC '00 Paper Acceptance Rate 85 of 182 submissions, 47%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)60
  • Downloads (Last 6 weeks)9
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)An Efficiency-Preserving Transformation from Honest-Verifier Statistical Zero-Knowledge to Statistical Zero-KnowledgeAdvances in Cryptology – EUROCRYPT 201810.1007/978-3-319-78372-7_3(66-87)Online publication date: 31-Mar-2018
  • (2010)Private coins versus public coins in zero-knowledge proof systemsProceedings of the 7th international conference on Theory of Cryptography10.1007/978-3-642-11799-2_35(588-605)Online publication date: 9-Feb-2010
  • (2006)Zero knowledge with efficient proversProceedings of the thirty-eighth annual ACM symposium on Theory of Computing10.1145/1132516.1132559(287-295)Online publication date: 21-May-2006
  • (2003)A complete problem for statistical zero knowledgeJournal of the ACM (JACM)10.1145/636865.63686850:2(196-249)Online publication date: 1-Mar-2003
  • (2003)Statistical Zero-Knowledge Proofs with Efficient Provers: Lattice Problems and MoreAdvances in Cryptology - CRYPTO 200310.1007/978-3-540-45146-4_17(282-298)Online publication date: 2003

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media