Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Qubit allocation as a combination of subgraph isomorphism and token swapping

Published: 10 October 2019 Publication History
  • Get Citation Alerts
  • Abstract

    In 2016, the first quantum processors have been made available to the general public. The possibility of programming an actual quantum device has elicited much enthusiasm. Yet, such possibility also brought challenges. One challenge is the so called Qubit Allocation problem: the mapping of a virtual quantum circuit into an actual quantum architecture. There exist solutions to this problem; however, in our opinion, they fail to capitalize on decades of improvements on graph theory. In contrast, this paper shows how to model qubit allocation as the combination of Subgraph Isomorphism and Token Swapping. This idea has been made possible by the publication of an approximative solution to the latter problem in 2016. We have compared our algorithm against five other qubit allocators, all independently designed in the last two years, including the winner of the IBM Challenge. When evaluated in "Tokyo", a quantum architecture with 20 qubits, our technique outperforms these state-of-the-art approaches in terms of the quality of the solutions that it finds and the amount of memory that it uses, while showing practical runtime.

    Supplementary Material

    a120-siraichi (a120-siraichi.webm)
    Presentation at OOPSLA '19

    References

    [1]
    Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. Trans. Comp.-Aided Des. Integ. Cir. Sys. 32, 6 (jun 2013), 818–830.
    [2]
    Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. 1995. Elementary gates for quantum computation. Physical review A 52, 5 (1995), 3457.
    [3]
    Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16 (1958), 87–90.
    [4]
    Alexandre Blais. 2001. Quantum network optimization. Phys. Rev. A 64 (Jul 2001), 022312. Issue 2.
    [5]
    Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W. Markstein. 1981. Register Allocation via Coloring. Comput. Lang. 6, 1 (1981), 47–57.
    [6]
    Stephen A. Cook. 1971. The Complexity of Theorem-proving Procedures. In STOC. ACM, NY, USA, 151–158.
    [7]
    Dean Copsey, Mark Oskin, Tzvetan Metodiev, Frederic T. Chong, Isaac Chuang, and John Kubiatowicz. 2003. The Effect of Communication Costs in Solid-state Quantum Computing Architectures. In SPAA. ACM, New York, NY, USA, 65–74.
    [8]
    L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph isomorphism algorithm for matching large graphs. TPAMI 26, 10 (Oct 2004), 1367–1372.
    [9]
    Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open Quantum Assembly Language. IBM, Armonk, NY, USA.
    [10]
    Aidan Dang, Charles D. Hill, and Lloyd C. L. Hollenberg. 2019. Optimising Matrix Product State Simulations of Shor’s Algorithm. CoRR 3 (2019), 116–125.
    [11]
    Simon J. Devitt. 2016. Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 3 (2016), 032329.
    [12]
    Michel H Devoret, Andreas Wallraff, and John M Martinis. 2004. Superconducting qubits: A short review. arXiv 0411174 (2004), 1–41.
    [13]
    P. Erdös and A. Rényi. 1959. On Random Graphs I. Publicationes Mathematicae 6 (1959), 290–297.
    [14]
    Jay M Gambetta, Jerry M Chow, and Matthias Steffen. 2017. Building logical qubits in a superconducting quantum computing system. NPJ Quantum Mechanics 3, Article 2 (2017), 7 pages.
    [15]
    Dario Gil. 2017. The Future of Computing: AI and Quantum. Online video.
    [16]
    Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum programming language. In SIGPLAN Notices, Vol. 48. ACM, NY, USA, 333–342.
    [17]
    Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases. In SIGMOD. ACM, NY, USA, 337–348.
    [18]
    Thomas Häner, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer. 2016. A Software Methodology for Compiling Quantum Programs. CoRR abs/1604.01401 (2016), 1–14.
    [19]
    IBM. 2016. IBM QX Devices. https://quantumexperience.ng.bluemix.net/qx/devices
    [20]
    Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and Andrew W. Cross. 2019. Quantum Circuit Compilers Using Gate Commutation Rules. In ASPDAC. ACM, New York, NY, USA, 191–196.
    [21]
    Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for compilation and analysis of quantum computing programs. In Computing Frontiers. ACM, NY, USA, 1.
    [22]
    Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. 2017. The Time Complexity of the Token Swapping Problem and Its Parallel Variants. In WALCOM. Springer, Heidelberg, Germany, 448–459.
    [23]
    J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. 2014. State preservation by repetitive error detection in a superconducting quantum circuit. CoRR arXiv:1411.7403 (2014), 1–30.
    [24]
    L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and C. G. Almudever. 2018. Mapping of Lattice Surgery-based Quantum Circuits on Surface Code Architectures. arXiv: arXiv:1805.11127
    [25]
    Gushu Li, Yufei Ding, and Yuan Xie. 2018. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. arXiv: arXiv:1809.02573 To appear in ASPLOS’19.
    [26]
    C. C. Lin, S. Sur-Kolay, and N. K. Jha. 2015. PAQCS: Physical Design-Aware Fault-Tolerant Quantum Circuit Synthesis. TVLSI 23, 7 (2015), 1221–1234.
    [27]
    Y. Lin, B. Yu, M. Li, and D. Z. Pan. 2018. Layout Synthesis for Topological Quantum Circuits With 1-D and 2-D Architectures. TCAD 37, 8 (2018), 1574–1587.
    [28]
    Paul Magnard, Philipp Kurpiers, Baptiste Royer, Theo Walter, Jean-Claude Besse, Simone Gasparinetti, Marek Pechal, Johannes Heinsoo, Simon Storz, Alexandre Blais, and Andreas Wallraff. 2018. Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. CoRR arXiv:1801.07689 (2018), 1–9.
    [29]
    Igor L. Markov, Aneeqa Fatima, Sergei V. Isakov, and Sergio Boixo. 2018. Quantum Supremacy Is Both Closer and Farther than It Appears. CoRR arXiv:1807.10749 (2018), 1–32.
    [30]
    D. Maslov, S. M. Falconer, and M. Mosca. 2008. Quantum Circuit Placement. TCAD 27, 4 (2008), 752–763.
    [31]
    Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and Takeaki Uno. 2016. Approximation and Hardness of Token Swapping. In ESA. Schloss Dagstuhl, Dagstuhl, Germany, 66:1–66:15.
    [32]
    M. Oskin, F. T. Chong, and I. L. Chuang. 2002. A practical architecture for reliable quantum computers. Computer 35, 1 (Jan 2002), 79–87.
    [33]
    Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar Solomonik, Erik W. Draeger, Eric T. Holland, and Robert Wisnieff. 2018. Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits. CoRR arXiv:1710.05867 (2018), 1–29.
    [34]
    M. Pedram and A. Shafaei. 2016. Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures. Circuits and Systems Magazine 16, 2 (2016), 62–74.
    [35]
    Fernando Magno Quintão Pereira and Jens Palsberg. 2005. Register Allocation Via Coloring of Chordal Graphs. In APLAS. Springer, Heidelberg, Germany, 315–329.
    [36]
    A. Saito, K. Kioi, Y. Akagi, N. Hashizume, and K. Ohta. 2000. Actual computational time-cost of the Quantum Fourier Transform in a quantum computer using nuclear spins. arXiv: quant-ph/0001113
    [37]
    Daniel Sank, Evan Jeffrey, J.Y. Mutus, T.C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Megrant A. Dunsworth, P.J.J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A.N. Cleland, and J.M. Martinis. 2014. Fast Scalable State Measurement with Superconducting Qubits. CoRR arXiv:1401.0257 (2014), 1–9.
    [38]
    A. Shafaei, M. Saeedi, and M. Pedram. 2014. Qubit placement to minimize communication overhead in 2D quantum architectures. In ASP-DAC. IEEE, Washington, DC, USA, 495–500.
    [39]
    R. R. Shrivastwa, K. Datta, and I. Sengupta. 2015. Fast Qubit Placement in 2D Architecture Using Nearest Neighbor Realization. In iNIS. IEEE, NY, USA, 95–100.
    [40]
    Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In CGO. ACM, NY, USA, 113?125.
    [41]
    Pavel Surynek. 2018. Finding Optimal Solutions to Token Swapping by Conflict-based Search and Reduction to SAT. arXiv: arXiv:1806.09487
    [42]
    Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac Chuang, and Igor L. Markov. 2006. A Layered Software Architecture for Quantum Computing Design Tools. Computer 39, 1 (2006), 74–83.
    [43]
    Krysta Marie Svore, A. Cross, and I-Hsun Chuang. 2004. Toward a Software Architecture for Quantum Computing Design Tools.
    [44]
    Swamit Tannu and Moinuddin Qureshi. 2019. A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In ASPLOS. ACM, NY, USA, To appear.
    [45]
    Kuhn H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 1-2 (1955), 83–97.
    [46]
    R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In ISMVL. IEEE, NY, USA, 220–225.
    [47]
    W. K. Wootters and W. H. Zurek. 1982. A single quantum cannot be cloned. Nature 299 (oct 1982), 802–803.
    [48]
    Katsuhisa Yamanaka, Erik D. Demaine, Takashi Horiyama, Akitoshi Kawamura, Shin-ichi Nakano, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Ryuhei Uehara, and Takeaki Uno. 2017. Sequentially Swapping Colored Tokens on Graphs. In WALCOM: Algorithms and Computation, Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen (Eds.). Springer, Heidelberg, Germany, 435–447.
    [49]
    Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. 2014. Swapping Labeled Tokens on Graphs. Springer, Heidelberg, Germany, 364–375.
    [50]
    Peixiang Zhao and Jiawei Han. 2010. On Graph Query Optimization in Large Networks. Proc. VLDB Endow. 3, 1-2 (2010), 340–351.
    [51]
    Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of quantum circuits to the IBM QX architectures. In DATE. IEEE, NY, USA, 1135–1138.
    [52]
    Alwin Zulehner and Robert Wille. 2019. Compiling SU(4) Quantum Circuits to IBM QX Architectures. In ASPDAC. ACM, New York, NY, USA, 185–190.

    Cited By

    View all
    • (2024)SMT-Based Layout Synthesis Approaches for Quantum CircuitsProceedings of the 2024 International Symposium on Physical Design10.1145/3626184.3633316(235-243)Online publication date: 12-Mar-2024
    • (2024)Mitigating fabrication errors by recovering defective syndrome qubits in surface codePhysical Review A10.1103/PhysRevA.109.012420109:1Online publication date: 16-Jan-2024
    • (2024)Deep Reinforcement Learning for Mapping Quantum Circuits to 2D Nearest‐Neighbor ArchitecturesAdvanced Quantum Technologies10.1002/qute.2023002897:2Online publication date: 2-Jan-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Programming Languages
    Proceedings of the ACM on Programming Languages  Volume 3, Issue OOPSLA
    October 2019
    2077 pages
    EISSN:2475-1421
    DOI:10.1145/3366395
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 October 2019
    Published in PACMPL Volume 3, Issue OOPSLA

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. Graph isomorphism
    2. Quantum computing
    3. Qubit allocation
    4. Token swapping

    Qualifiers

    • Research-article

    Funding Sources

    • CNPq
    • FAPEMIG

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)223
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SMT-Based Layout Synthesis Approaches for Quantum CircuitsProceedings of the 2024 International Symposium on Physical Design10.1145/3626184.3633316(235-243)Online publication date: 12-Mar-2024
    • (2024)Mitigating fabrication errors by recovering defective syndrome qubits in surface codePhysical Review A10.1103/PhysRevA.109.012420109:1Online publication date: 16-Jan-2024
    • (2024)Deep Reinforcement Learning for Mapping Quantum Circuits to 2D Nearest‐Neighbor ArchitecturesAdvanced Quantum Technologies10.1002/qute.2023002897:2Online publication date: 2-Jan-2024
    • (2023)An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit PlacementIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.2022EAP1050E106.A:2(124-132)Online publication date: 1-Feb-2023
    • (2023)Exploiting the Regular Structure of Modern Quantum Architectures for Compiling and Optimizing Programs with Permutable OperatorsProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 410.1145/3623278.3624751(108-124)Online publication date: 25-Mar-2023
    • (2023)CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic CircuitProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3582016.3582030(59-71)Online publication date: 25-Mar-2023
    • (2023)Machine Learning Optimization of Quantum Circuit LayoutsACM Transactions on Quantum Computing10.1145/35652714:2(1-25)Online publication date: 24-Feb-2023
    • (2023)Mapping Quantum Circuits to Modular Architectures with QUBO2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.00094(790-801)Online publication date: 17-Sep-2023
    • (2023)Effective and Efficient Qubit Mapper2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)10.1109/ICCAD57390.2023.10323857(1-9)Online publication date: 28-Oct-2023
    • (2023)Optimizing quantum algorithms on bipotent architecturesPhysical Review A10.1103/PhysRevA.108.022610108:2Online publication date: 17-Aug-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media