Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical Analysis

Published: 29 May 2021 Publication History

Abstract

The significance of air pollution and the problems associated with it are fueling deployments of air quality monitoring stations worldwide. The most common approach for air quality monitoring is to rely on environmental monitoring stations, which unfortunately are very expensive both to acquire and to maintain. Hence, environmental monitoring stations are typically sparsely deployed, resulting in limited spatial resolution for measurements. Recently, low-cost air quality sensors have emerged as an alternative that can improve the granularity of monitoring. The use of low-cost air quality sensors, however, presents several challenges: They suffer from cross-sensitivities between different ambient pollutants; they can be affected by external factors, such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Periodic re-calibration can improve the accuracy of low-cost sensors, particularly with machine-learning-based calibration, which has shown great promise due to its capability to calibrate sensors in-field. In this article, we survey the rapidly growing research landscape of low-cost sensor technologies for air quality monitoring and their calibration using machine learning techniques. We also identify open research challenges and present directions for future research.

References

[1]
S. O. Agbroko and J. Covington. 2018. A novel, low-cost, portable PID sensor for the detection of volatile organic compounds. Sens. Actuat. B: Chem. 275 (2018), 10–15.
[2]
M. Aleixandre and M. Gerboles. 2012. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 30 (Sep. 2012), 169–174.
[3]
Z. J. Andersen, K. Bønnelykke, M. Hvidberg, S. S. Jensen, M. Ketzel, S. Loft, M. Sørensen, A. Tjønneland, K. Overvad, and O. Raaschou-Nielsen. 2012. Long-term exposure to air pollution and asthma hospitalisations in older adults: A cohort study. Thorax 67, 1 (2012), 6–11.
[4]
Z. J. Andersen, M. Hvidberg, S. S. Jensen, M. Ketzel, S. Loft, M. Sørensen, A. Tjønneland, K. Overvad, and O. Raaschou-Nielsen. 2011. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution. Am. J. Respir. Crit. Care Med. 183, 4 (2011), 455–461.
[5]
Z. J. Andersen, L. C. Kristiansen, K. K. Andersen, T. S. Olsen, M. Hvidberg, S. S. Jensen, M. Ketzel, S. Loft, M. Sørensen, A. Tjønneland, K. Overvad, and O. Raaschou-Nielsen. 2012. Stroke and long-term exposure to outdoor air pollution from nitrogen dioxide. Stroke 43, 2 (2012), 320–325.
[6]
Array of Things. 2018. Array of Things Expands with Partner Projects Around U.S.Retrieved November 12, 2020 from https://medium.com/array-of-things/array-of-things-expands-with-partner-projects-around-u-s-c0ef9171f314.
[7]
E. Austin, I. Novosselov, E. Seto, and M. G. Yost. 2015. Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor. PLoS One 10, 9 (Sep. 2015), 1–17.
[8]
L. Balzano and R. Nowak. 2007. Blind calibration of sensor networks. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN’07). Association for Computing Machinery, New York, NY, 79–88.
[9]
R. Baron and J. Saffell. 2017. Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review. ACS Sens. 2, 11 (2017), 1553–1566.
[10]
N. Barsan, D. Koziej, and U. Weimar. 2007. Metal oxide-based gas sensor research: How to?Sens. Actuat. B: Chem. 121, 1 (2007), 18–35.
[11]
M. Bart, D. E. Williams, B. Ainslie, I. McKendry, J. Salmond, S. K. Grange, M. Alavi-Shoshtari, D. Steyn, and G. S. Henshaw. 2014. High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser valley, British Columbia. Environ. Sci. Technol. 48, 7 (2014), 3970–3977.
[12]
R. Beelen, G. Hoek, D. Vienneau, M. Eeftens, K. Dimakopoulou, X. Pedeli, M. Tsai, N. Künzli, T. Schikowski, A. Marcon, K. T. Eriksen, O. Raaschou-Nielsen, E. Stephanou, E. Patelarou, T. Lanki, T. Yli-Tuomi, C. Declercq, G. Falq, M. Stempfelet, M. Birk, J. Cyrys, S. von Klot, G. Nádor, M. J. Varró, A. Dėdelė, R. Gražulevičienė, A. Mölter, S. Lindley, C. Madsen, G. Cesaroni, A. Ranzi, C. Badaloni, C. Badaloni, B. Hoffmann, M. Nonnemacher, U. Krämer, T. Kuhlbusch, M. Cirach, A. de Nazelle, M. Nieuwenhuijsen, T. Bellander, M. Korek, D. Olsson, M. Strömgren, E. Dons, M. Jerrett, P. Fischer, M. Wang, B. Brunekreef, and K. de Hoogh. 2013. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 72 (2013), 10–23.
[13]
M. L. Bell, K. Ebisu, R. D. Peng, J. M. Samet, and F. Dominici. 2009. Hospital admissions and chemical composition of fine particle air pollution. Am. J. Respir. Crit. Care Med. 179, 12 (2009), 1115–1120.
[14]
R. Berkowicz, F. Palmgren, O. Hertel, and E. Vignati. 1996. Using measurements of air pollution in streets for evaluation of urban air quality—meterological analysis and model calculations. Sci. Total Environ. 189-190 (1996), 259–265.
[15]
C. Borrego, A. M. Costa, J. Ginja, M. Amorim, M. Coutinho, K. Karatzas, Th. Sioumis, N. Katsifarakis, K. Konstantinidis, S. De Vito, E. Esposito, P. Smith, N. André, P. Gérard, L.A. Francis, N. Castell, P. Schneider, M. Viana, M. C. Minguillón, W. Reimringer, R. P. Otjes, O. von Sicard, R. Pohle, B. Elen, D. Suriano, V. Pfister, M. Prato, S. Dipinto, and M. Penza. 2016. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 147 (2016), 246–263.
[16]
C. Borrego, J. Ginja, M. Coutinho, C. Ribeiro, K. Karatzas, Th Sioumis, N. Katsifarakis, K. Konstantinidis, S. De Vito, E. Esposito, M. Salvato, P. Smith, N. André, P. Gérard, L.A. Francis, N. Castell, P. Schneider, M. Viana, M. C. Minguillón, W. Reimringer, R. P. Otjes, O. von Sicard, R. Pohle, B. Elen, D. Suriano, V. Pfister, M. Prato, S. Dipinto, and M. Penza. 2018. Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise—Part II. Atmos. Environ. 193 (2018), 127–142.
[17]
I. Bos, Patrick De Boever, Luc Int Panis, and Romain Meeusen. 2014. Physical activity, air pollution and the brain. Sports Med. 44, 11 (01 Nov 2014), 1505–1518.
[18]
R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel, and J. D. Kaufman. 2010. Particulate matter air pollution and cardiovascular disease. Circulation 121, 21 (2010), 2331–2378.
[19]
J. Burgués and S. Marco. 2018. Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors 18, 2 (2018), 15.
[20]
N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, and A. Bartonova. 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?Environ. Int. 99 (2017), 293–302.
[21]
T. Chai and R. R. Draxler. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 3 (2014), 1247–1250.
[22]
B. Chen, D. Schwegler-Berry, A. Cumpston, J. Cumpston, S. Friend, S. Stone, and M. Keane. 2016. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J. Occupat. Environ. Hygiene 13 (Feb. 2016).
[23]
T. Chen and C. Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). Association for Computing Machinery, New York, NY, 785–794.
[24]
Y. Cheng, X. He, Z. Zhou, and L. Thiele. 2019. ICT: In-field calibration transfer for air quality sensor deployments. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 3, 1, Article 6 (Mar. 2019), 19 pages.
[25]
Y. Cheng, X. He, Z. Zhou, and L. Thiele. 2020. MapTransfer: Urban air quality map generation for downscaled sensor deployments. In Proceedings of the 2020 IEEE/ACM 5th International Conference on Internet-of-Things Design and Implementation (IoTDI’20). IEEE, 14–26.
[26]
Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang. 2014. AirCloud: A cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems (SenSys’14). Association for Computing Machinery, New York, NY, 251–265.
[27]
D. P. Chock, T. R. Terrell, and S. B. Levitt. 1975. Time-series analysis of Riverside, California air quality data. Atmos. Environ. 9, 11 (1975), 978–989.
[28]
M. R. Chowdhury, S. De, N. K. Shukla, and R. N. Biswas. 2018. Energy-efficient air pollution monitoring with optimum duty-cycling on a sensor hub. In Proceedings of the 2018 24th National Conference on Communications (NCC). IEEE, 1–6.
[29]
Z. Chowdhury, R. D. Edwards, M. Johnson, K. Naumoff Shields, T. Allen, E. Canuz, and K. R. Smith. 2007. An inexpensive light-scattering particle monitor: Field validation. J. Environ. Monit. 9, 10 (2007), 1099–1106.
[30]
J. M. Cordero, R. Borge, and A. Narros. 2018. Using statistical methods to carry out in field calibrations of low cost air quality sensors. Sens. Actuat. B: Chem. 267 (2018), 245–254.
[31]
Council of the European Union. 2008. Directive 2008/50/EC of the European parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union L152 (2008), 1–44.
[32]
E. S. Cross, L. R. Williams, D. K. Lewis, G. R. Magoon, T. B. Onasch, M. L. Kaminsky, D. R. Worsnop, and J. T. Jayne. 2017. Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmos. Meas. Techn. 10, 9 (2017), 3575–3588.
[33]
P. Das, S. Ghosh, S. Chatterjee, and S. De. 2020. Energy harvesting-enabled 5G advanced air pollution monitoring device. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF’20). IEEE, 218–223.
[34]
S. De Vito, G. Di Francia, E. Esposito, S. Ferlito, F. Formisano, and E. Massera. 2020. Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices. Pattern Recogn. Lett. 136 (2020), 264–271.
[35]
S. De Vito, E. Esposito, N. Castell, P. Schneider, and A. Bartonova. 2020. On the robustness of field calibration for smart air quality monitors. Sens. Actuat. B: Chem. 310 (2020), 127869.
[36]
S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia. 2008. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuat. B: Chem. 129, 2 (2008), 750–757.
[37]
S. De Vito, M. Piga, L. Martinotto, and G. Di Francia. 2009. CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sens. Actuat. B: Chem. 143, 1 (2009), 182–191.
[38]
T. Dinh, I. Choi, Y. Son, and J. Kim. 2016. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuat. B: Chem. 231 (2016), 529–538.
[39]
A. Donnelly, B. Misstear, and B. Broderick. 2015. Real time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmos. Environ. 103 (2015), 53–65.
[40]
B. N. Duncan, A. I. Prados, L. N. Lamsal, Y. Liu, D. G. Streets, P. Gupta, E. Hilsenrath, R. A. Kahn, J. E. Nielsen, A. J. Beyersdorf, S. P. Burton, A. M. Fiore, J. Fishman, D. K. Henze, C. A. Hostetler, N. A. Krotkov, P. Lee, M. Lin, S. Pawson, G. Pfister, K. E. Pickering, R. B. Pierce, Y. Yoshida, and L. D. Ziemba. 2014. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 94 (2014), 647–662.
[41]
P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff. 2009. Common sense: Participatory urban sensing using a network of handheld air quality monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09). ACM, New York, NY, 349–350.
[42]
M. Eeftens, R. Beelen, K. de Hoogh, T. Bellander, G. Cesaroni, M. Cirach, C. Declercq, A. Dėdelė, E. Dons, A. de Nazelle, K. Dimakopoulou, K. Eriksen, G. Falq, P. Fischer, C. Galassi, R. Gražulevičienė, J. Heinrich, B. Hoffmann, M. Jerrett, D. Keidel, M. Korek, T. Lanki, S. Lindley, C. Madsen, A. Mölter, G. Nádor, M. Nieuwenhuijsen, M. Nonnemacher, X. Pedeli, O. Raaschou-Nielsen, E. Patelarou, U. Quass, A. Ranzi, C. Schindler, M. Stempfelet, E. Stephanou, D. Sugiri, M. Tsai, T. Yli-Tuomi, M. J. Varró, D. Vienneau, S. von Klot, K. Wolf, B. Brunekreef, and G. Hoek. 2012. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 46, 20 (2012), 11195–11205.
[43]
E. Esposito, S. De Vito, M. Salvato, V. Bright, R.L. Jones, and O. Popoola. 2016. Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems. Sens. Actuat. B: Chem. 231 (2016), 701–713.
[44]
M. Fierz, C. Houle, P. Steigmeier, and H.Burtscher. 2011. Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 45, 1 (2011), 1–10.
[45]
Y. Freund and R. E. Schapire. 1996. Experiments with a new boosting algorithm. In Proceedings of the 13th International Conference on International Conference on Machine Learning (ICML’96). Morgan Kaufmann, San Francisco, CA, 148–156.
[46]
J. H. Friedman. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 5 (2001), 1189–1232.
[47]
J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46, 4, Article 44 (Mar. 2014), 37 pages.
[48]
Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, and C. Chen. 2016. Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM’16). IEEE, 1–9.
[49]
U. Gehring, A. H. Wijga, M. Brauer, P. Fischer, J. C. de Jongste, M. Kerkhof, M. Oldenwening, H. A. Smit, and B. Brunekreef. 2010. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am. J. Respir. Crit. Care Med. 181, 6 (2010), 596–603.
[50]
M. Goldberg. 2011. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 23, 4 (2011), 243–298.
[51]
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. 2018. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 5, Article 93 (Aug. 2018), 42 pages.
[52]
L. H. Schmoll, T. M. Peters, and P. O’Shaughnessy. 2010. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles. J. Occupat. Environ. Hygiene 7 (Sep. 2010), 535–545.
[53]
D. Hasenfratz, T. Arn, I. de Concini, O. Saukh, and L. Thiele. 2015. Health-optimal routing in urban areas. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN’15). ACM, New York, NY, 398–399.
[54]
D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. 2012. Participatory air pollution monitoring using smartphones. In Proceedings of the 2nd International Workshop on Mobile Sensing. Academic Press, 1–5.
[55]
D. Hasenfratz, O. Saukh, and L. Thiele. 2012. On-the-fly calibration of low-cost gas sensors. In Wireless Sensor Networks, G. Picco and W. Heinzelman (Eds.). Springer, 228–244.
[56]
D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele. 2014. Pushing the spatio-temporal resolution limit of urban air pollution maps. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom’14). IEEE, 69–77.
[57]
T. Hastie, R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY.
[58]
G. Hoek, R. Beelen, K. de Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42, 33 (2008), 7561–7578.
[59]
W. Hou, J. Wang, X. Xu, J. S. Reid, S. J. Janz, and J. W. Leitch. 2020. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. J. Quant. Spectrosc. Radiat. Transf. 253 (2020), 107161.
[60]
K. Hu, A. Rahman, H. Bhrugubanda, and V. Sivaraman. 2017. HazeEst: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors. IEEE Sens. J. 17, 11 (Jun. 2017), 3517–3525.
[61]
K. Hu, V. Sivaraman, H. Bhrugubanda, S. Kang, and A. Rahman. 2016. SVR based dense air pollution estimation model using static and wireless sensor network. In Proceedings of the 2016 IEEE Conference on Sensors (SENSORS’16). IEEE, 1–3.
[62]
A. K. Jain, Jianchang Mao, and K. M. Mohiuddin. 1996. Artificial neural networks: A tutorial. Computer 29, 3 (1996), 31–44.
[63]
W. Jiao, G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, L. Weinstock, S. Zimmer-Dauphinee, and K. Buckley. 2016. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Techn. 9, 11 (2016), 5281–5292.
[64]
M. Johnson, V. Isakov, J.S. Touma, S. Mukerjee, and H. Özkaynak. 2010. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos. Environ. 44, 30 (2010), 3660–3668.
[65]
N. E. Johnson, B. Bonczak, and C. E. Kontokosta. 2018. Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment. Atmos. Environ. 184 (2018), 9–16.
[66]
M. Kim, J. Choi, and W. Park. 2018. MEMS PZT oscillating platform for fine dust particle removal at resonance. Int. J. Precis. Eng. Manufact. 19, 12 (01 Dec. 2018), 1851–1859.
[67]
M. Kulmala. 2018. Build a Global Earth Observatory. Retrieved from https://www.nature.com/articles/d41586-017-08967-y.
[68]
J. Kuula, T. Mäkelä, R. Hillamo, and H. Timonen. 2017. Response characterization of an inexpensive aerosol sensor. Sensors (Switzerland) 17 (Nov. 2017), 14.
[69]
E. Lagerspetz, N. H. Motlagh, M. Arbayani Zaidan, P. L. Fung, J. Mineraud, S. Varjonen, M. Siekkinen, P. Nurmi, Y. Matsumi, S. Tarkoma, and T. Hussein. 2019. MegaSense: Feasibility of low-cost sensors for pollution hot-spot detection. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN’19), Vol. 1. IEEE, 1083–1090.
[70]
Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (May 2015), 436–444. https://doi.org/10.1038/nature14539
[71]
H. Lee, J. Kang, S. Kim, Y. Kim, S. Yoo, and D. Lee. 2020. Long-term evaluation and calibration of low-cost particulate matter (PM) sensor. Sensors 20, 13 (2020), 3617.
[72]
A. Lewis and P. Edwards. 2016. Validate personal air-pollution sensors. Nature 535 (2016), 29–31.
[73]
A. C. Lewis, E. von Schneidemesser, and R. E. Peltier. 2018. Low-cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications. Technical Report 1215. World Meteorological Organization, Geneva, Switzerland.
[74]
J. J. Li, B. Faltings, O. Saukh, D. Hasenfratz, and J. Beutel. 2012. Sensing the air we breathe: The opensense Zurich dataset. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12). AAAI Press, 323–325.
[75]
C. Lin, J. Gillespie, M. D. Schuder, W. Duberstein, I. J. Beverland, and M. R. Heal. 2015. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos. Environ. 100 (2015), 111–116.
[76]
Y. Lin, W. Dong, and Y. Chen. 2018. Calibrating low-cost sensors by a two-phase learning approach for urban air quality measurement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 18 (Mar. 2018), 18 pages.
[77]
Z. C. Lipton. 2018. The mythos of model interpretability. Commun. ACM 61, 10 (Sep. 2018), 36–43.
[78]
B. Liu, A. Binaykia, P. Chang, M. K. Tiwari, and C. Tsao. 2017. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS One 12, 7 (07 2017), 1–17.
[79]
D. Liu, Q. Zhang, J. Jiang, and D. Chen. 2017. Performance calibration of low-cost and portable particular matter (PM) sensors. J. Aerosol Sci. 112 (2017), 1–10.
[80]
H. Liu, H. Wu, H. Lee, Y. Ho, and L. Chen. 2017. A system calibration model for mobile PM2.5 sensing using low-cost sensors. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings’17) and IEEE Green Computing and Communications (GreenCom’17) and IEEE Cyber, Physical and Social Computing (CPSCom’17) and IEEE Smart Data (SmartData’17). IEEE, 611–618.
[81]
L. Liu, W. Liu, Y. Zheng, H. Ma, and C. Zhang. 2018. Third-eye: A mobilephone-enabled crowdsensing system for air quality monitoring. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 20 (Mar. 2018), 26 pages.
[82]
B. Maag, O. Saukh, D. Hasenfratz, and L. Thiele. 2016. Pre-deployment testing, augmentation and calibration of cross-sensitive sensors. In Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (EWSN’16). Junction Publishing, 169–180. http://dl.acm.org/citation.cfm?id=2893711.2893735
[83]
B. Maag, Z. Zhou, O. Saukh, and L. Thiele. 2017. SCAN: Multi-hop calibration for mobile sensor arrays. Proc. ACM Interact. Mobile Wear. Ubiq. Technol. 1, 2 (2017), Article 19, 21 pages.
[84]
B. Maag, Z. Zhou, and L. Thiele. 2018. A survey on sensor calibration in air pollution monitoring deployments. IEEE IoT J. 5, 6 (Dec. 2018), 4857–4870.
[85]
B. Maag, Z. Zhou, and L. Thiele. 2018. W-air: Enabling personal air pollution monitoring on wearables. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 2, 1, Article 24 (Mar. 2018), 25 pages.
[86]
N. Masson, R. Piedrahita, and M. Hannigan. 2015. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sens. Actuat. B: Chem. 208 (2015), 339–345.
[87]
N. Masson, R. Piedrahita, and M. Hannigan. 2015. Quantification method for electrolytic sensors in long-term monitoring of ambient air quality. Sensors 15, 10 (2015), 27283–27302.
[88]
B. C. McDonald, J. A. de Gouw, J. B. Gilman, S. H. Jathar, A. Akherati, C. D. Cappa, J. L. Jimenez, J. Lee-Taylor, P. L. Hayes, S. A. McKeen, Y. Y. Cui, S. Kim, D. R. Gentner, G. Isaacman-VanWertz, A. H. Goldstein, R. A. Harley, G. J. Frost, J. M. Roberts, T. B. Ryerson, and M. Trainer. 2018. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359, 6377 (2018), 760–764.
[89]
R. Meier, K. Clark, and M. Riediker. 2012. Comparative testing of a miniature diffusion size classifier to assess airborne ultrafine particles under field conditions. Aerosol Sci. Technol. 47 (Jan. 2012).
[90]
P. H. Merz, L. J. Painter, and P. R. Ryason. 1972. Aerometric data analysis—Time series analysis and forecast and an atmospheric smog diagram. Atmos. Environ. 6, 5 (1972), 319–342.
[91]
D. Mintz. 2018. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. Retrieved from https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf.
[92]
G. Miskell, K. Alberti, B. Feenstra, G. S. Henshaw, V. Papapostolou, H. Patel, A. Polidori, J. A. Salmond, L. Weissert, and D. E. Williams. 2019. Reliable data from low cost ozone sensors in a hierarchical network. Atmos. Environ. 214 (2019), 116870.
[93]
S. Moltchanov, I. Levy, Y. Etzion, U. Lerner, D. M. Broday, and B. Fishbain. 2015. On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci. Total Environ. 502 (2015), 537–547.
[94]
A. Moore, M. Figliozzi, and C. M. Monsere. 2012. Air quality at bus stops: Empirical analysis of exposure to particulate matter at bus stop shelters. Transport. Res. Rec. 2270, 1 (2012), 76–86.
[95]
L. Morawska, P. K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova, A. Bedini, F. Chai, B. Christensen, M. Dunbabin, J. Gao, G. S.W. Hagler, R. Jayaratne, P. Kumar, A. K. H. Lau, P. K. K. Louie, M. Mazaheri, Z. Ning, N. Motta, B. Mullins, M. Rahman, Z. Ristovski, M. Shafiei, D. Tjondronegoro, D. Westerdahl, and R. Williams. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?Environ. Int. 116 (2018), 286–299.
[96]
N. H. Motlagh, E. Lagerspetz, P. Nurmi, X. Li, S. Varjonen, J. Mineraud, M. Siekkinen, A. Rebeiro-Hargrave, T. Hussein, T. Petaja, M. Kulmala, and S. Tarkoma. 2020. Toward massive scale air quality monitoring. IEEE Commun. Mag. 58, 2 (2020), 54–59.
[97]
M. Mueller, J. Meyer, and C. Hueglin. 2017. Design of an ozone and nitrogen dioxide sensor unit and its long-term operation within a sensor network in the city of Zurich. Atmos. Meas. Techn. 10, 10 (2017), 3783–3799.
[98]
N. Nikzad, N. Verma, C. Ziftci, E. Bales, N. Quick, P. Zappi, K. Patrick, S. Dasgupta, I. Krueger, T. Šimunić Rosing, and W. G. Griswold. 2012. CitiSense: Improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system. In Proceedings of the Conference on Wireless Health (WH’12). ACM, New York, NY, Article 11, 8 pages.
[99]
OECD. 2016. The Economic Consequence of Outdoor Air Pollution. OECD Publishing, Paris.
[100]
D. Oletic and V. Bilas. 2015. Design of sensor node for air quality crowdsensing. In Proceedings of the IEEE Sensors Applications Symposium (SAS’15). IEEE, 1–5.
[101]
H. Olstrup, C. Johansson, B. Forsberg, A. Tornevi, A. Ekebom, and K. Meister. 2019. A Multi-Pollutant Air Quality Health Index (AQHI) based on short-term respiratory effects in Stockholm, Sweden. Int. J. Environ. Res. Publ. Health 16, 1 (Jan. 2019), 105.
[102]
Ö. Özgür. 2012. An overview of metal oxide semiconducting sensors in electronic nose applications. In Proceedings of the 3rd International Symposium on Sustainable Development. 506–515. https://core.ac.uk/download/pdf/153447895.pdf
[103]
R. Piedrahita, Y. Xiang, N. Masson, J. Ortega, A. Collier, Y. Jiang, K. Li, R. P. Dick, Q. Lv, M. Hannigan, and L. Shang. 2014. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Techn. 7, 10 (2014), 3325–3336.
[104]
T. Pulkkinen, J. Nurminen, and P. Nurmi. 2020. Understanding WiFi cross-technology interference detection in the real world. In Proceedings of the 40th International Conference on Distributed Computing Systems (ICDCS’20). IEEE, 11.
[105]
O. Raaschou-Nielsen, Z. J. Andersen, M. Hvidberg, S. S. Jensen, M. Ketzel, M. Sørensen, J. Hansen, S. Loft, K. Overvad, and A. Tjønneland. 2011. Air pollution from traffic and cancer incidence: A Danish cohort study. Environ. Health 10, 1 (19 Jul. 2011), 67.
[106]
L. F. Radke, J. L. Stith, D. A. Hegg, and P. V. Hobbs. 1978. Airborne studies of particles and gases from forest fires. J. Air Pollut. Contr. Assoc. 28, 1 (1978), 30–34.
[107]
N. Ramanathan, L. Balzano, M. C. Burt, D. Estrin, T. Harmon, C. K. Harvey, J. Jay, E. Kohler, S. E. Rothenberg, and M. Srivastava. 2006. Rapid Deployment with Confidence: Calibration and Fault Detection in Environmental Sensor Networks. Technical Report. University of California. Retrieved from https://escholarship.org/uc/item/8v26b5qh.
[108]
C. E. Rasmussen. 2004. Gaussian Processes in Machine Learning. Springer, Berlin, 63–71.
[109]
S. T. Rinne and J. D. Kaufman. 2012. Air pollution. In Clinical Respiratory Medicine (3rd ed.), Stephen G. Spiro, Gerard A. Silvestri, and Alvar Agustí (Eds.). W.B. Saunders, Philadelphia, 937–945.
[110]
A. C. Romain and J. Nicolas. 2010. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuat. B: Chem. 146, 2 (2010), 502–506.
[111]
J. S. Apte, K. Messier, S. Gani, M. Brauer, T. Kirchstetter, M. Lunden, J. D. Marshall, C. J. Portier, R. Vermeulen, and S. P. Hamburg. 2017. High-resolution air pollution mapping with Google street view cars: Exploiting big data. Environ. Sci. Technol. 51 (Jun. 2017), 6999–7008.
[112]
E. M. Saber and G. Heydari. 2012. Flow patterns and deposition fraction of particles in the range of 0.1–10 µm at trachea and the first third generations under different breathing conditions. Comput. Biol. Med. 42, 5 (2012), 631–638.
[113]
R. L. R. Salcedo, M. C. M. Alvim Ferraz, C. A. Alves, and F. G. Martins. 1999. Time-series analysis of air pollution data. Atmos. Environ. 33, 15 (1999), 2361–2372.
[114]
O. Saukh, D. Hasenfratz, and L. Thiele. 2015. Reducing multi-hop calibration errors in large-scale mobile sensor networks. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN’15). ACM, New York, NY, 274–285.
[115]
W. Shao, H. Zhang, and H. Zhou. 2017. Fine particle sensor based on multi-angle light scattering and data fusion. Sensors (Switzerland) 17 (May 2017), 15.
[116]
Y. Shirai, Y. Kishino, F. Naya, and Y. Yanagisawa. 2016. Toward on-demand urban air quality monitoring using public vehicles. In Proceedings of the 2nd International Workshop on Smart (SmartCities’16). Association for Computing Machinery, New York, NY, Article 1, 6 pages.
[117]
J. H. Sohn, M. Atzeni, L. Zeller, and G. Pioggia. 2008. Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sens. Actuat. B: Chem. 131, 1 (2008), 230–235.
[118]
S. Sousan, K. Koehler, G. Thomas, J. H. Park, M. Hillman, A. Halterman, and T. M. Peters. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 50, 5 (2016), 462–473.
[119]
L. Spinelle, M. Gerboles, G. Kok, S. Persijn, and T. Sauerwald. 2017. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17, 7 (Jun. 2017), 1520.
[120]
L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola. 2015. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuat. B: Chem. 215 (2015), 249–257.
[121]
L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola. 2017. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuat. B: Chem. 238 (2017), 706–715.
[122]
D. G. Streets, T. Canty, G. R. Carmichael, B. de Foy, R. R. Dickerson, B. N. Duncan, D. P. Edwards, J. A. Haynes, D. K. Henze, M. R. Houyoux, D. J. Jacob, N. A. Krotkov, L. N. Lamsal, Y. Liu, Z. Lu, R. V. Martin, G. G. Pfister, R. W. Pinder, R. J. Salawitch, and K. J. Wecht. 2013. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 77 (2013), 1011–1042.
[123]
B. Szulczyński and J. Gębicki. 2017. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4, 1 (Mar. 2017), 21.
[124]
G. Tang, J. Zhang, X. Zhu, T. Song, C. Münkel, B. Hu, K. Schäfer, Z. Liu, J. Zhang, L. Wang, J. Xin, P. Suppan, and Y. Wang. 2016. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 16, 4 (2016), 2459–2475.
[125]
A. C. Targino, M. D. Gibson, P. Krecl, M. V. Costa Rodrigues, M. M. dos Santos, and M. de Paula Corrêa. 2016. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 218 (2016), 475–486.
[126]
J. E. Thompson. 2016. Crowd-sourced air quality studies: A review of the literature & portable sensors. Trends Environ. Anal. Chem. 11 (2016), 23–34.
[127]
W. Tsujita, A. Yoshino, H. Ishida, and T. Moriizumi. 2005. Gas sensor network for air-pollution monitoring. Sens. Actuat. B: Chem. 110, 2 (2005), 304–311.
[128]
J. E. Van Engelen and H. H. Hoos. 2020. A survey on semi-supervised learning. Mach. Learn. 109 (2020), 373–440.
[129]
J. Vanschoren. 2018. Meta-learning: A survey. arxiv:1810.03548. Retrieved fromhttp://arxiv.org/abs/1810.03548.
[130]
S. Vardoulakis, N. Gonzalez-Flesca, B. E. A. Fisher, and K. Pericleous. 2005. Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos. Environ. 39, 15 (2005), 2725–2736.
[131]
A. Vasiliev, A. E. Varfolomeev, I. A. Volkov, N. Simonenko, P. V. Arsenov, I. Vlasov, V. V. Ivanov, A. V. Pislyakov, A. Lagutin, I. Jahatspanian, and T. Maeder. 2018. Reducing humidity response of gas sensors for medical applications: Use of spark discharge synthesis of metal oxide nanoparticles. Sensors 18 (Aug. 2018), 13.
[132]
H. Volk, F. Lurmann, B. Penfold, I. Hertz-Picciotto, and R. McConnell. 2013. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatr. 70, 1 (2013), 71–77.
[133]
P. Wagner and K. Schäfer. 2017. Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Clim. 22 (2017), 64–79.
[134]
C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao. 2010. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10, 3 (2010), 2088–2106.
[135]
J. Wang and S. A. Christopher. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 30, 21 (2003), 4–1–4–4.
[136]
J. Wang and S. A. Christopher. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 30, 21 (2003), 3771–3784.
[137]
R. Wang, S. B. Henderson, H. Sbihi, R. W. Allen, and M. Brauer. 2013. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 64 (2013), 312–319.
[138]
Y. Wang, J. Li, H. Jing, Q. Zhang, J. Jiang, and P. Biswas. 2015. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 49 (Nov. 2015), 1063–1077.
[139]
Y. Wang, Q. Yao, J. Kwok, J. T. Kwok, and L. M. Ni. 2020. Generalizing from a few examples: A survey on few-shot learning. Comput. Surv. 53, 3 (2020), 63:1–63:34.
[140]
P. Wei, Z. Ning, S. Ye, L. Sun, F. Yang, K. C. Wong, D. Westerdahl, and P. K. K. Louie. 2018. Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors 18 (Jan. 2018), 16.
[141]
WHO. 2016. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Technical Report. World Health Organization. Retrieved from https://www.who.int/phe/publications/air-pollution-global-assessment/en/.
[142]
Y. Xiang, L. S. Bai, R. Piedrahita, R. P. Dick, Q. Lv, M. Hannigan, and L. Shang. 2012. Collaborative calibration and sensor placement for mobile sensor networks. In Proceedings of the 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN’12). IEEE, 73–83.
[143]
K. Yan, L. Kou, and D. Zhang. 2018. Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans. Cybernet. 48, 1 (2018), 288–299.
[144]
K. Yan and D. Zhang. 2016. Calibration transfer and drift compensation of e-noses via coupled task learning. Sens. Actuat. B: Chem. 225 (2016), 288–297.
[145]
W. Y. Yi, K. M. Lo, T. Mak, K. S. Leung, Y. Leung, and M. L. Meng. 2015. A survey of wireless sensor network based air pollution monitoring systems. Sensors 15, 12 (2015), 31392–31427.
[146]
H. Yu, Q. Li, Y. Geng, Y. Zhang, and Z. Wei. 2020. AirNet: A calibration model for low-cost air monitoring sensors using dual sequence encoder networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’20), Vol. 34, 1. AAAI Press, Palo Alto, CA, 1129–1136.
[147]
H. Yu, Q. Li, R. Wang, Z. Chen, Y. Zhang, Y. A. Geng, L. Zhang, H. Cui, and K. Zhang. 2020. A deep calibration method for low-cost air monitoring sensors with multilevel sequence modeling. IEEE Trans. Instrument. Meas. 69, 9 (2020), 7167–7179.
[148]
M. A. Zaidan, N. Hossein Motlagh, P. L. Fung, D. Lu, H. Timonen, J. Kuula, J. V. Niemi, S. Tarkoma, T. Petäjä, M. Kulmala, and T. Hussein. 2020. Intelligent calibration and virtual sensing for integrated low-cost air quality sensors. IEEE Sens. J. 20, 22 (2020), 13638–13652.
[149]
J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang. 2018. CrossSense: Towards cross-site and large-scale WiFi sensing. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MobiCom’18). Association for Computing Machinery, New York, NY, 305–320.
[150]
X. Zhang, X. Chen, and X. Zhang. 2018. The impact of exposure to air pollution on cognitive performance. Proc. Natl. Acad. Sci. U.S.A. 115, 37 (2018), 9193–9197.
[151]
T. Zheng, M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E. Carlson. 2018. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Techn. 11, 8 (2018), 4823–4846.
[152]
Y. Zheng, F. Liu, and H. Hsieh. 2013. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13). ACM, New York, NY, 1436–1444.
[153]
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, Y. Zhu, H. Xiong, and Q. He. 2021. A Comprehensive survey on transfer learning. Proceedings of the IEEE 109, 1 (2021), 43--76.
[154]
N. Zimmerman, A. A. Presto, S. P. N. Kumar, J. Gu, A. Hauryliuk, E. S. Robinson, A. L. Robinson, and R. Subramanian. 2018. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Techn. 11, 1 (2018), 291–313.

Cited By

View all
  • (2025)Low-cost sensors for air quality monitoringTreatise on Geochemistry10.1016/B978-0-323-99762-1.00046-2(393-414)Online publication date: 2025
  • (2024)Deriving the hygroscopicity of ambient particles using low-cost optical particle countersAtmospheric Measurement Techniques10.5194/amt-17-6073-202417:20(6073-6084)Online publication date: 17-Oct-2024
  • (2024)Challenges and Opportunities in Calibrating Low-Cost Environmental SensorsSensors10.3390/s2411365024:11(3650)Online publication date: 5-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks  Volume 17, Issue 2
May 2021
296 pages
ISSN:1550-4859
EISSN:1550-4867
DOI:10.1145/3447946
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 29 May 2021
Accepted: 01 December 2020
Revised: 01 November 2020
Received: 01 August 2020
Published in TOSN Volume 17, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Air quality sensors
  2. calibration
  3. low-cost
  4. machine learning
  5. review
  6. survey

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2,407
  • Downloads (Last 6 weeks)402
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Low-cost sensors for air quality monitoringTreatise on Geochemistry10.1016/B978-0-323-99762-1.00046-2(393-414)Online publication date: 2025
  • (2024)Deriving the hygroscopicity of ambient particles using low-cost optical particle countersAtmospheric Measurement Techniques10.5194/amt-17-6073-202417:20(6073-6084)Online publication date: 17-Oct-2024
  • (2024)Challenges and Opportunities in Calibrating Low-Cost Environmental SensorsSensors10.3390/s2411365024:11(3650)Online publication date: 5-Jun-2024
  • (2024)Calibration Methods for Low-Cost Particulate Matter Sensors Considering Seasonal VariabilitySensors10.3390/s2410302324:10(3023)Online publication date: 10-May-2024
  • (2024)Development of a Unified IoT Platform for Assessing Meteorological and Air Quality Data in a Tropical EnvironmentSensors10.3390/s2409272924:9(2729)Online publication date: 25-Apr-2024
  • (2024)Effect of Three-Dimensional-Printed Thermoplastics Used in Sensor Housings on Common Atmospheric Trace GassesSensors10.3390/s2408261024:8(2610)Online publication date: 19-Apr-2024
  • (2024)Air Quality Monitoring Using Low-Cost Sensors in Urban Areas of Jodhpur, RajasthanInternational Journal of Environmental Research and Public Health10.3390/ijerph2105062321:5(623)Online publication date: 14-May-2024
  • (2024)Establishing a knowledge structure for yield prediction in cereal crops using unmanned aerial vehiclesFrontiers in Plant Science10.3389/fpls.2024.140124615Online publication date: 9-Aug-2024
  • (2024)Measurements of the Limit of Detection for Electrochemical Gas SensorsJournal of Testing and Evaluation10.1520/JTE2023067552:5(2675-2684)Online publication date: 1-Sep-2024
  • (2024)Efficient MLTL Calibration Model for Monitoring the Real-Time Pollutant Emission from Brick Kiln IndustryJournal of Advances in Information Technology10.12720/jait.15.4.544-55415:4(544-554)Online publication date: 2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media