Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/347090.347116acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
Article
Free access

The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space

Published: 01 August 2000 Publication History
First page of PDF

References

[1]
C. C. Aggarwal, A. Hinneburg, D. A. Keim. On The Surprising Behavior of Distance Metrics in High Dimensional Space. IBM Research Report, RC 21739, 2000.]]
[2]
C. C. Aggarwal et al. Fast Algorithms for Projected Clustering. ACM SIGMOD Conference Proceedings, pages 61-72, 1999.]]
[3]
C. C. Aggarwal, P. S. Yu. Finding Generalized Projected Clusters in High Dimensional Spaces. ACM SIGMOD Conference Proceedings, pages 70-81, 2000.]]
[4]
C. C. Aggarwal, J. L. Wolf, P. S. Yu. A New Method For Similarity Indexing of Market Basket Data. ACM SIGMOD Conference Proceedings, pages 407-418, 1999.]]
[5]
S. Arya. Nearest Neighbor Searching and Applications. Ph. D. Thesis, University of Maryland, College Park, MD, 1995.]]
[6]
R. Weber, H.-J. Scheck, S. Blott. A Quantitative Analysis and Performance Study for Similarity Search Methods in High Dimensional Spaces. VLDB Conference Proceedings, pages 194-205, 1998.]]
[7]
N. Beckman, H.-P. Kriegel, R. Schneider, B. Seeger. The R-Tree: An Efficient and Robust Method for Points and Rectangles. ACM SIGMOD Conference Proceedings, pages 322-331, 1990.]]
[8]
K. P. Bennett, U. Fayyad, D. Geiger. Density-Based Indexing for Approximate Nearest Neighbor Queries. ACM SIGKDD Conference Proceedings, pages 233-243, 1999.]]
[9]
S. Berchtold, C. B.ohm, H.-P. Kriegel. The Pyramid Technique: Towards Breaking the Curse of Dimensionality. ACM SIGMOD Conference Proceedings, pages 142-153, 1998.]]
[10]
B.-U. Pagel, F. Korn, C. Faloutsos. De ating the Dimensionality Curse Using Multiple Fractal Dimensions. ICDE Conference Proceedings, pages 589-598, 2000.]]
[11]
S. Berchtold, D. Keim, H.-P. Kriegel. The X-Tree: An Index Structure for High Dimensional Data. VLDB Conference Proceedings, pages 28-39, 1996.]]
[12]
K. Beyer et al. When is Nearest Neighbors Meaningful? ICDT Conference Proceedings, pages 217-235, 1999.]]
[13]
G. Das, H. Mannila, P. Ronkainen. Similarity of Attributes by External Probes. KDD Conference Proceedings, pages 16-22, 1998.]]
[14]
S. Deerwester et al. Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6): pages 391-407, 1990.]]
[15]
U. Shaft, J. Goldstein, K. Beyer. Nearest Neighbor Query Performance for Unstable Distributions. Technical Report TR 1388, University of Wisconsin at Madison, 1998.]]
[16]
V. Ganti, J. Gehrke, R. Ramakrishnan. CACTUS- Clustering Categorical Data Using Summaries. ACM SIGKDD Conference Proceedings, pages 73-83, 1999.]]
[17]
A. Gionis, P. Indyk, R. Motwani. Similarity Search in High Dimensions via Hashing. VLDB Conference Proceedings, pages 518-529, 1999.]]
[18]
A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD Conference Proceedings, pages 47-57, 1984.]]
[19]
A. Hinneburg, C. C. Aggarwal, D. A. Keim. What is the Nearest Neighbor in High Dimensional Spaces? VLDB Conference Proceedings, 2000.]]
[20]
R. Jain, D. A. White. Similarity Indexing: Algorithms and Performance. SPIE Storage and Retrieval for Image and Video Databases IV, 2670: pages 62-75, 1996.]]
[21]
I. Kamel, C. Faloutsos. Hilbert R-Tree: An improved R-Tree Using Fractals. VLDB Conference Proceedings, pages 500-509, 1994.]]
[22]
N. Katayama, S. Satoh. The SR-Tree: An Index Structure for High Dimensional Nearest Neighbor Queries. ACM SIGMOD Conference Proceedings, pages 369-380, 1997.]]
[23]
K.-I. Lin, H. V. Jagadish, C. Faloutsos. The TV-tree: An Index Structure for High Dimensional Data. VLDB Journal, 3(4): pages 517-542, 1994.]]
[24]
N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries. ACM SIGMOD Conference Proceedings, pages 71-79, 1995.]]
[25]
G. Salton, M. J. McGill. Introduction to Modern Information Retrieval. Mc Graw Hill, New York.]]
[26]
H. Samet. Design and Analysis of Spatial Data Structures. Addison Wesley, 1989.]]
[27]
T. Sellis, N. Roussopoulos, C. Faloutsos. The R+ Tree: A Dynamic Index for Multidimensional Objects. VLDB Conference Proceedings, pages 507-518, 1987.]]
[28]
D. A. White, R. Jain. Similarity Indexing with the SS-Tree. ICDE Conference Proceedings, pages 516-523, 1996.]]

Cited By

View all
  • (2022)A meta-indexing method for fast probably approximately correct nearest neighbor searchesMultimedia Tools and Applications10.1007/s11042-022-12690-w81:21(30465-30491)Online publication date: 6-Apr-2022
  • (2021)Modern Privacy-Preserving Record Linkage Techniques: An OverviewIEEE Transactions on Information Forensics and Security10.1109/TIFS.2021.311402616(4966-4987)Online publication date: 2021
  • (2019)High-dimensional similarity searches using query driven dynamic quantization and distributed indexingDistributed and Parallel Databases10.1007/s10619-019-07266-xOnline publication date: 11-Apr-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining
August 2000
537 pages
ISBN:1581132336
DOI:10.1145/347090
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2000

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. dimensionality curse
  2. indexing

Qualifiers

  • Article

Conference

KDD00
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)93
  • Downloads (Last 6 weeks)20
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)A meta-indexing method for fast probably approximately correct nearest neighbor searchesMultimedia Tools and Applications10.1007/s11042-022-12690-w81:21(30465-30491)Online publication date: 6-Apr-2022
  • (2021)Modern Privacy-Preserving Record Linkage Techniques: An OverviewIEEE Transactions on Information Forensics and Security10.1109/TIFS.2021.311402616(4966-4987)Online publication date: 2021
  • (2019)High-dimensional similarity searches using query driven dynamic quantization and distributed indexingDistributed and Parallel Databases10.1007/s10619-019-07266-xOnline publication date: 11-Apr-2019
  • (2018)Similarity Search Techniques in Exploratory Search: A ReviewTENCON 2018 - 2018 IEEE Region 10 Conference10.1109/TENCON.2018.8650257(2193-2198)Online publication date: Oct-2018
  • (2017)Supporting Dynamic Quantization for High-Dimensional Data AnalyticsProceedings of the ExploreDB'1710.1145/3077331.3077336(1-6)Online publication date: 14-May-2017
  • (2017)Continuous space models for CLIRInformation Processing and Management: an International Journal10.1016/j.ipm.2016.11.00253:2(359-370)Online publication date: 1-Mar-2017
  • (2017)A new indexing method for complex similarity queries in immersive multimedia systemsMultimedia Tools and Applications10.1007/s11042-016-3675-976:9(11331-11346)Online publication date: 1-May-2017
  • (2016)A fast and efficient Hamming LSH-based scheme for accurate linkageKnowledge and Information Systems10.1007/s10115-016-0919-y49:3(861-884)Online publication date: 1-Dec-2016
  • (2015)An LSH-Based Blocking Approach with a Homomorphic Matching Technique for Privacy-Preserving Record LinkageIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2014.234991627:4(909-921)Online publication date: 1-Apr-2015
  • (2015)Multiplicative distanceKnowledge and Information Systems10.1007/s10115-014-0813-445:3(783-805)Online publication date: 1-Dec-2015
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media