Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/347090.347118acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
Article
Free access

The generalized Bayesian committee machine

Published: 01 August 2000 Publication History
First page of PDF

References

[1]
J. M. Bernando and A. F. M. Smith. Bayesian Theory. aotm Wiley and Sons, New York, 1994.
[2]
L. Csato, E. Fokou, M. Opper, B. Schottky, and O. VVTinther. Efficient approaches to gaussian process classification. In S. A. Solla, T. K. Leen, and K.-R. Mfiller, editors, Advances in neural information processing systems 12. MIT Press, 2000.
[3]
H. Drucker. Boosting neural networks. In A. J. C. Sharkey, editor, Combining artificial neural nets. Springer, 1999.
[4]
L. Fahrmeir and G. Tutz. Multivariate Statistical Modeling Based on Generalized Linear Models. Springer, New York, 1994.
[5]
Y. Fremd. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
[6]
Y. Fremd and R. E. Schapire. A decision theoretic generalization of online lemming and an application to boosting. Journal of Computer and System Sciences, 55, 1997.
[7]
J. Ffiedmma, T. Hastie, mad R. Tibstfirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 2000. To appear.
[8]
T. J. Hastie mad R. J. Tibstfirani. Generalized additive models. Chapman g Hall, 1990.
[9]
R. A. Jacobs, M. I. Jordan, S. J. Nowlma, mad J. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3, 1991.
[10]
D. J. C. MacKay. Bayesian model comparison mad backprop nets. In J. E. Moody, S. J. Hmason, mad R. P. Lippmarm, editors, Advance.s in neural information proee.s.sing .sy.stem.s 4, pages 839-846. Morgan Kaufinama, 1992.
[11]
D. J. C. MacKay. Introduction to gaussima processes. In C. M. Bishop, editor, Neural Networks and Machine Learning, volume 168. NATO Asi Series F, Computer mad Systems Sciences, Morgan Kaufinama, 1998.
[12]
P. McCullagh mad J. Nelder. Generalized linear models. Chapman Hall, 1983.
[13]
J. E. Moody. The effective number of parameters: an analysis of generalization mad regulmization in nonlinear lemming systems. In J. E. Moody, S. J. Hmason, mad R. P. Lippmama, editors, Advances in neural information processing systems 4, pages 847-854. Morgan Kaufinama, 1992.
[14]
R. M. Neal. Baye.sian learning for neural network.s. Springer, 1996.
[15]
R. M. Neal. Monte Carlo implementation of Gaussian process models for Baye.sian regression and classification. Chapman g Hall, 1997.
[16]
J. C. Platt. Probabilistic outputs for support vector maclfines mad comparisons to regularized fikefihood methods. In A. J. Smola, editor, Advance.s in large Margin Classifiers. MIT press, 2000.
[17]
T. Poggio mad F. Girosi. Networks fox" approximation mad learning. Proceedings of the IEEE, 78:1481-1497, 1990.
[18]
C. E. Rasmussen. Evaluation of gaussima processes mad other methods for non-finem" regression. Teclmieal report, Department of Computer Science, University of Toronto, 1996.
[19]
R. E. Schapire. The strength of weak learnabifity. Machine learning, 5(2):197-227, 1990.
[20]
V. Tresp. A bayesian committee mactfine. Neural Computation, 2000. In print.
[21]
V. Tresp. Interacting gaussima processes for graptfieal models, submitted, 2000.
[22]
V. Tresp mad M. Tmfiguclfi. Combining estimators using non-eonstmat weighting functions. In G. Tesauro, D. S. Touretzky, mad T. K. Leen, editors, Advance.s in neural information procssing systems7, pages 419-426. MIT Press, 1995.
[23]
V. N. Vapnik. The nature of statistical learning theory. Spxinger, New York, 1995.
[24]
G. Yahba. Spline models for observational data. Society for Industrial mad Appfied Mathematics, 1983.
[25]
G. Yahba. Bayesian "confidence intervals" for the cross-validated smoottfing spfine. J. Roy. Stat. Soc. Set. B, 10:133-150, 1990.
[26]
G. Wahba. Support vector macfines, reproducing kenael filbert spaces mad randomized GACV. In B. Schglkopf, C. J. C. Burges, mad A. J. Smola, editors, Advanee.s in Kernel Method.s, pages 69-88. MIT Press, 1999.
[27]
C. K. I. Williams. Computing with infinite neural networks. Neural Computation, 10:1203-1216, 1998.
[28]
C. K. I. Williams mad D. Barber. Bayesian classification with gaussima processes. IEEE Transactions on Pattern Analy.si.s and Machine Intelligence, 2@1342-1351, 1998.
[29]
C. K. I. Williams mad C. E. Rasmussen. Gaussima processes for regression. In M. C. Mozer mad M. E. Hasselmo, editors, Advanee.s in neural information processing systems8, pages 514-520. MIT Press, 1996.

Cited By

View all
  • (2022)Modeling the potential impacts of improved monthly income on child stunting in India: a subnational geospatial perspectiveBMJ Open10.1136/bmjopen-2021-05509812:4(e055098)Online publication date: 5-Apr-2022
  • (2021)Learning Based Model Predictive Control for Quadcopters with Dual Gaussian Process2021 60th IEEE Conference on Decision and Control (CDC)10.1109/CDC45484.2021.9683258(1515-1521)Online publication date: 14-Dec-2021
  • (2021)A two-layer aggregation model with effective consistency for large-scale Gaussian process regressionEngineering Applications of Artificial Intelligence10.1016/j.engappai.2021.104449106:COnline publication date: 1-Nov-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining
August 2000
537 pages
ISBN:1581132336
DOI:10.1145/347090
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2000

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Gaussian processes
  2. combining estimators
  3. committee machines
  4. data mining
  5. kernel-based systems
  6. support vector machines

Qualifiers

  • Article

Conference

KDD00
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)45
  • Downloads (Last 6 weeks)11
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Modeling the potential impacts of improved monthly income on child stunting in India: a subnational geospatial perspectiveBMJ Open10.1136/bmjopen-2021-05509812:4(e055098)Online publication date: 5-Apr-2022
  • (2021)Learning Based Model Predictive Control for Quadcopters with Dual Gaussian Process2021 60th IEEE Conference on Decision and Control (CDC)10.1109/CDC45484.2021.9683258(1515-1521)Online publication date: 14-Dec-2021
  • (2021)A two-layer aggregation model with effective consistency for large-scale Gaussian process regressionEngineering Applications of Artificial Intelligence10.1016/j.engappai.2021.104449106:COnline publication date: 1-Nov-2021
  • (2019)A Building Information Model (BIM) and Artificial Neural Network (ANN) Based System for Personal Thermal Comfort Evaluation and Energy Efficient Design of Interior SpaceSustainability10.3390/su1118497211:18(4972)Online publication date: 11-Sep-2019
  • (2019)Research on Improved Gaussian Smoothing Filters for SLAM ApplicationMekhatronika, Avtomatizatsiya, Upravlenie10.17587/mau.20.756-76420:12(756-764)Online publication date: 6-Dec-2019
  • (2013)Sparse inverse kernel Gaussian Process regressionStatistical Analysis and Data Mining10.1002/sam.111896:3(205-220)Online publication date: 1-Jun-2013
  • (2012)Gaussian Process-based Manifold Learning for Human Motion ModelingIntelligent Data Analysis for Real-Life Applications10.4018/978-1-4666-1806-0.ch015(283-308)Online publication date: 2012
  • (2011)Generalized Gaussian process modelsProceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition10.1109/CVPR.2011.5995688(2681-2688)Online publication date: 20-Jun-2011
  • (2010)Block-GPProceedings of the 2010 IEEE International Conference on Data Mining10.1109/ICDM.2010.38(791-796)Online publication date: 13-Dec-2010
  • (2002)Transductive and inductive methods for approximate Gaussian process regressionProceedings of the 16th International Conference on Neural Information Processing Systems10.5555/2968618.2968740(977-984)Online publication date: 1-Jan-2002
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media