Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

A Survey on Deep Learning for Human Mobility

Published: 23 November 2021 Publication History
  • Get Citation Alerts
  • Abstract

    The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the predictive power of artificial intelligence, triggered the application of deep learning to human mobility. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides a taxonomy of mobility tasks, a discussion on the challenges related to each task and how deep learning may overcome the limitations of traditional models, a description of the most relevant solutions to the mobility tasks described above, and the relevant challenges for the future. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, trajectory generation, and flow generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.

    References

    [1]
    Zain Ul Abideen, Heli Sun, Zhou Yang, Rana Zeeshan Ahmad, Adnan Iftekhar, and Amir Ali. 2021. Deep wide spatial-temporal based transformer networks modeling for the next destination according to the taxi driver behavior prediction. Appl. Sci. 11, 1 (2021), 17.
    [2]
    Mohammed N. Ahmed, Gianni Barlacchi, Stefano Braghin, Francesco Calabrese, Michele Ferretti, Vincent P. A. Lonij, Rahul Nair, Rana Novack, Jurij Paraszczak, and Andeep S. Toor. 2016. A multi-scale approach to data-driven mass migration analysis. In Proceedings of the SoGood@ ECML-PKDD Conference.
    [3]
    Yi Ai, Zongping Li, Mi Gan, Yunpeng Zhang, Daben Yu, Wei Chen, and Yanni Ju. 2019. A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Comput. Applic. 31, 5 (2019), 1665–1677.
    [4]
    Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca Foschini, and Rebecca Montanari. 2020. Big spatial data management for the Internet of Things: A survey. J. Netw. Syst. Manag. 28, 4 (2020), 990–1035.
    [5]
    Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca Foschini, and Rebecca Montanari. 2020. Efficient QoS-aware spatial join processing for scalable NoSQL storage frameworks. IEEE Trans. Netw. Serv. Manag. 18, 2 (2020), 2437–2449.
    [6]
    Laura Alessandretti, Ulf Aslak, and Sune Lehmann. 2020. The scales of human mobility. Nature 587, 7834 (2020), 402–407. DOI:https://doi.org/10.1038/s41586-020-2909-1
    [7]
    Laura Alessandretti, Piotr Sapiezynski, Vedran Sekara, Sune Lehmann, and Andrea Baronchelli. 2018. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 7 (2018), 485–491.
    [8]
    Daniel Ashbrook and Thad Starner. 2002. Learning significant locations and predicting user movement with GPS. In Proceedings of the 6th International Symposium on Wearable Computers. IEEE, 101–108.
    [9]
    Duygu Balcan, Bruno Gonçalves, Hao Hu, José J. Ramasco, Vittoria Colizza, and Alessandro Vespignani. 2010. Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model. J. Comput. Sci. 1, 3 (2010), 132–145.
    [10]
    Yi Bao, Zhou Huang, Linna Li, Yaoli Wang, and Yu Liu. 2020. A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media. Int. J. Geog. Inf. Sci. 35, 4 (2020), 1–22.
    [11]
    Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R. James, Maxime Lenormand, Thomas Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini, and Marcello Tomasini. 2018. Human mobility: Models and applications. Phys. Rep. 734 (2018), 1–74.
    [12]
    Hugo Barbosa, Fernando B. de Lima-Neto, Alexandre Evsukoff, and Ronaldo Menezes. 2015. The effect of recency to human mobility. EPJ Data Sci. 4 (2015), 1–14.
    [13]
    Gianni Barlacchi, Christos Perentis, Abhinav Mehrotra, Mirco Musolesi, and Bruno Lepri. 2017. Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors. EPJ Data Sci. 6, 1 (2017), 27.
    [14]
    Gianni Barlacchi, Alberto Rossi, Bruno Lepri, and Alessandro Moschitti. 2017. Structural semantic models for automatic analysis of urban areas. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 279–291.
    [15]
    Armando Bazzani, Bruno Giorgini, Sandro Rambaldi, Riccardo Gallotti, and Luca Giovannini. 2010. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J. Statist. Mech.: Theor. Exper. 2010, 05 (2010), P05001.
    [16]
    Citi Bike. 2013. Citi Bike System Data - NYC. Retrieved from https://www.citibikenyc.com/system-data.
    [17]
    Capital Bikeshare. 2011. Capital Bikeshare - Washington DC. Retrieved from https://www.capitalbikeshare.com/system-data.
    [18]
    V. Bindschaedler and R. Shokri. 2016. Synthesizing plausible privacy-preserving location traces. In Proceedings of the IEEE Symposium on Security and Privacy (SP). 546–563.
    [19]
    Justine I. Blanford, Zhuojie Huang, Alexander Savelyev, and Alan M. MacEachren. 2015. Geo-located tweets. enhancing mobility maps and capturing cross-border movement. PLoS One 10, 6 (2015), 1–16.
    [20]
    Vincent D. Blondel, Adeline Decuyper, and Gautier Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 1 (2015), 10.
    [21]
    M. Bohm, Mirco Nanni, and Luca Pappalardo. 2021. Quantifying the presence of air pollutants over a road network in high spatio-temporal resolution. In Proceedings of the Climate Change AI, NeurIPS Workshop.
    [22]
    George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. 2015. Time Series Analysis: Forecasting and Control. John Wiley & Sons.
    [23]
    Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello Rabuffi. 2014. CRAWDAD dataset roma/taxi (v. 2014-07-17). https://crawdad.org/roma/taxi/20140717/.
    [24]
    Dirk Brockmann, Lars Hufnagel, and Theo Geisel. 2006. The scaling laws of human travel. Nature 439, 7075 (2006), 462–465.
    [25]
    Ingrid Burbey and Thomas L. Martin. 2012. A survey on predicting personal mobility. Int. J. Pervas. Comput. Commun. 8, 1 (2012).
    [26]
    Matteo Böhm, Mirco Nanni, and Luca Pappalardo. 2021. Improving vehicles’ emissions reduction policies by targeting gross polluters. arxiv:physics.soc-ph/2107.03282.
    [27]
    F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti. 2011. Estimating origin-destination flows using mobile phone location data. IEEE Pervas. Comput. 10, 4 (2011), 36–44.
    [28]
    Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. 2010. Human mobility prediction based on individual and collective geographical preferences. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. 312–317.
    [29]
    Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing. 1293–1304.
    [30]
    Justin David Carlson. 2010. Mapping Large, Urban Environments with GPS-aided SLAM. Ph.D. Dissertation. Carnegie Mellon University.
    [31]
    Serhan Cevik. 2020. Going viral: A gravity model of infectious diseases and tourism flows. Open Economies Review.
    [32]
    Shwu-Jing Chang, Gong-Ying Hsu, Jia-Ao Yang, Kuan-Ning Chen, Yung-Fang Chiu, and Fu-Tong Chang. 2010. Vessel traffic analysis for maritime intelligent transportation system. In Proceedings of the IEEE 71st Vehicular Technology Conference. IEEE, 1–4.
    [33]
    Guangshuo Chen, Aline Carneiro Viana, Marco Fiore, and Carlos Sarraute. 2019. Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Sci. 8, 1 (2019), 30.
    [34]
    J. Chen, Z. Xiao, D. Wang, W. Long, and V. Havyarimana. 2019. Stay of Interest: A dynamic spatiotemporal stay behavior perception method for private car users. In Proceedings of the IEEE 21st International Conference on High Performance Computing and Communications. 1526–1532.
    [35]
    Qi Chen, Wei Wang, Fangyu Wu, Suparna De, Ruili Wang, Bailing Zhang, and Xin Huang. 2019. A survey on an emerging area: Deep learning for smart city data. IEEE Trans. Emerg. Topics Comput. Intell. 3, 5 (2019), 392–410.
    [36]
    Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware deep model for joint mobility and time prediction. In Proceedings of the 13th International Conference on Web Search and Data Mining. 106–114.
    [37]
    Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: User movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1082–1090.
    [38]
    Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 1724–1734.
    [39]
    Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014).
    [40]
    Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter Stewart. 2016. Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 3504–3512.
    [41]
    Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. 2015. Attention-based models for speech recognition. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 577–585.
    [42]
    Giuliano Cornacchia and Luca Pappalardo. 2021. STS-EPR: Modelling individual mobility considering the spatial, temporal, and social dimensions together. Procedia Comput. Sci. 184 (2021), 258–265. DOI:https://doi.org/10.1016/j.procs.2021.03.035
    [43]
    Balázs Cs Csáji, Arnaud Browet, Vincent A. Traag, Jean-Charles Delvenne, Etienne Huens, Paul Van Dooren, Zbigniew Smoreda, and Vincent D. Blondel. 2013. Exploring the mobility of mobile phone users. Phys. A: Statist. Mech. Its Applic. 392, 6 (2013), 1459–1473.
    [44]
    Yilan Cui, Xing Xie, and Yi Liu. 2018. Social media and mobility landscape: Uncovering spatial patterns of urban human mobility with multi source data. Front. Environ. Sci. Eng. 12, 5 (2018), 7.
    [45]
    Susan L. Cutter, Joseph A. Ahearn, Bernard Amadei, Patrick Crawford, Elizabeth A. Eide, Gerald E. Galloway, Michael F. Goodchild, Howard C. Kunreuther, Meredith Li-Vollmer, Monica Schoch-Spana et al. 2013. Disaster resilience: A national imperative. Environ.: Sci. Policy Sustain. Devel. 55, 2 (2013), 25–29.
    [46]
    Genan Dai, Xiaoyang Hu, Youming Ge, Zhiqing Ning, and Yubao Liu. 2021. Attention based simplified deep residual network for citywide crowd flows prediction. Front. Comput. Sci. 15, 2 (2021), 1–12.
    [47]
    Alexandre De Brébisson, Étienne Simon, Alex Auvolat, Pascal Vincent, and Yoshua Bengio. 2015. Artificial neural networks applied to taxi destination prediction. In Proceedings of the International Conference on ECML PKDD Discovery Challenge. 40–51.
    [48]
    Yves-Alexandre de Montjoye, Sébastien Gambs, Vincent Blondel, Geoffrey Canright, Nicolas de Cordes, Sébastien Deletaille, Kenth Engø-Monsen, Manuel Garcia-Herranz, Jake Kendall, Cameron Kerry, Gautier Krings, Emmanuel Letouzé, Miguel Luengo-Oroz, Nuria Oliver, Luc Rocher, Alex Rutherford, Zbigniew Smoreda, Jessica Steele, Erik Wetter, Alex “Sandy” Pentland, and Linus Bengtsson. 2018. On the privacy-conscientious use of mobile phone data. Sci. Data 5, 1 (2018), 180286.
    [49]
    Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R. Stevens, Andrea E. Gaughan, Vincent D. Blondel, and Andrew J. Tatem. 2014. Dynamic population mapping using mobile phone data. Proc. Nat. Acad. Sci. 111, 45 (2014), 15888–15893.
    [50]
    Bowen Du, Hao Peng, Senzhang Wang, Md Zakirul Alam Bhuiyan, Lihong Wang, Qiran Gong, Lin Liu, and Jing Li. 2019. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Trans. Intell. Transport. Syst. 21, 3 (2019), 972–985.
    [51]
    Nathan Eagle and Alex Sandy Pentland. 2009. Eigenbehaviors: Identifying structure in routine. Behav. Ecol. Sociobiol. 63, 11 (2009), 1689–1689.
    [52]
    Patrick Ebel, Ibrahim Emre Göl, Christoph Lingenfelder, and Andreas Vogelsang. 2020. Destination prediction based on partial trajectory data. arXiv:2004.07473 (2020).
    [53]
    Zeinab Ebrahimpour, Wanggen Wan, Ofelia Cervantes, Tianhang Luo, and Hidayat Ullah. 2019. Comparison of main approaches for extracting behavior features from crowd flow analysis. ISPRS Int. J. Geo-inf. 8, 10 (2019), 440.
    [54]
    Sven Erlander and Neil F. Stewart. 1990. The Gravity Model in Transportation Analysis: Theory and Extensions. Vol. 3. VSP.
    [55]
    Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. 2017. Real-valued (medical) time series generation with recurrent conditional GANs. arXiv:1706.02633 (2017).
    [56]
    Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. 2013. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 8 (2013), 1915–1929.
    [57]
    Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. 2018. DeepMove: Predicting human mobility with attentional recurrent networks. In Proceedings of the World Wide Web Conference. 1459–1468.
    [58]
    Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. 2020. Learning to simulate human mobility. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’20). Association for Computing Machinery, New York, NY, 3426–3433. DOI:https://doi.org/10.1145/3394486.3412862
    [59]
    Z. Feng and Y. Zhu. 2016. A survey on trajectory data mining: Techniques and applications. IEEE Access 4 (2016), 2056–2067.
    [60]
    V. Fernandez Arguedas, G. Pallotta, and M. Vespe. 2018. Maritime traffic networks: From historical positioning data to unsupervised maritime traffic monitoring. IEEE Trans. Intell. Transport. Syst. 19, 3 (2018), 722–732.
    [61]
    Michele Ferretti, Gianni Barlacchi, Luca Pappalardo, Lorenzo Lucchini, and Bruno Lepri. 2018. Weak nodes detection in urban transport systems: Planning for resilience in Singapore. In Proceedings of the IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 472–480.
    [62]
    Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Franccoise Fessant, Dominique Le Hello, Ulrich Matchi Aivodji, Baptiste Olivier, Tony Quertier, and Razvan Stanica. 2019. Privacy in trajectory micro-data publishing: A survey. Cryptog. Secur. 13 (2019).
    [63]
    Riccardo Gallotti, Armando Bazzani, Mirko Degli Esposti, and Sandro Rambaldi. 2013. Entropic measures of individual mobility patterns. J. Statist. Mech.: Theor. Exper. 2013, 10 (2013), P10022.
    [64]
    Riccardo Gallotti, Armando Bazzani, Sandro Rambaldi, and Marc Barthelemy. 2016. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 1 (2016), 12600.
    [65]
    Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. 2010. Show me how you move and I will tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS. 34–41.
    [66]
    Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. 2012. Next place prediction using mobility Markov chains. In Proceedings of the 1st Workshop on Measurement, Privacy, and Mobility. 1–6.
    [67]
    Qiang Gao, Fan Zhou, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fengli Zhang. 2019. Predicting human mobility via variational attention. In Proceedings of the World Wide Web Conference. 2750–2756.
    [68]
    F. Giannotti, L. Pappalardo, D. Pedreschi, and D. Wang. 2013. A Complexity Science Perspective on Human Mobility. Cambridge University Press, 297–314. DOI:https://doi.org/10.1017/CBO9781139128926.016
    [69]
    Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. 2008. Understanding individual human mobility patterns. Nature 453, 7196 (2008), 779–782.
    [70]
    Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning. Vol. 1. The MIT Press, Cambridge. MA.
    [71]
    Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems. 2672–2680.
    [72]
    Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. 2013. Hybrid speech recognition with deep bidirectional LSTM. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding. IEEE, 273–278.
    [73]
    Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18, 5–6 (2005), 602–610.
    [74]
    Clark L. Gray and Valerie Mueller. 2012. Natural disasters and population mobility in Bangladesh. Proc. Nat. Acad. Sci. 109, 16 (2012), 6000–6005.
    [75]
    Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 855–864.
    [76]
    Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017. Improved training of Wasserstein GANs. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 5769–5779.
    [77]
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.
    [78]
    Andrea Hess, Karin Anna Hummel, Wilfried N. Gansterer, and Günter Haring. 2015. Data-driven human mobility modeling: A survey and engineering guidance for mobile networking. ACM Comput. Surv. 48, 3 (2015), 1–39.
    [79]
    Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735–1780.
    [80]
    D. Huang, X. Song, Z. Fan, R. Jiang, R. Shibasaki, Y. Zhang, H. Wang, and Y. Kato. 2019. A variational autoencoder based generative model of urban human mobility. In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). 425–430.
    [81]
    G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2261–2269.
    [82]
    D. H. Hubel and T. N. Wiesel. 1959. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 3 (1959), 574–591.
    [83]
    D. H. Hubel and T. N. Wiesel. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 1 (1962), 106–154.
    [84]
    Tomoharu Iwata and Hitoshi Shimizu. 2019. Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 3935–3942.
    [85]
    Kasthuri Jayarajah, Andrew Tan, and Archan Misra. 2018. Understanding the interdependency of land use and mobility for urban planning. In Proceedings of the ACM International Joint Conference and International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. Association for Computing Machinery, 1079–1087.
    [86]
    Renhe Jiang, Zekun Cai, Zhaonan Wang, Chuang Yang, Zipei Fan, Quanjun Chen, Kota Tsubouchi, Xuan Song, and Ryosuke Shibasaki. 2021. DeepCrowd: A deep model for large-scale citywide crowd density and flow prediction. IEEE Trans. Knowl. Data Eng. (2021).
    [87]
    Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Satoshi Miyazawa, and Ryosuke Shibasaki. 2018. DeepUrbanMomentum: An online deep-learning system for short-term urban mobility prediction. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.
    [88]
    Shan Jiang, Gaston A. Fiore, Yingxiang Yang, Joseph Ferreira, Emilio Frazzoli, and Marta C. González. 2013. A Review of urban computing for mobile phone traces: Current methods, challenges and opportunities. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing.
    [89]
    Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele Veneziano, Shounak Athavale, and Marta C. Gonzalez. 2016. The TimeGeo modeling framework for urban mobility without travel surveys. Proc. Nat. Acad. Sci. 113 (2016), 201524261.
    [90]
    Weiwei Jiang and Jiayun Luo. 2021. Graph Neural Network for Traffic Forecasting: A Survey. arxiv:cs.LG/2101.11174.
    [91]
    Wenwei Jin, Youfang Lin, Zhihao Wu, and Huaiyu Wan. 2018. Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction. Proceedings of the 2nd International Conference on Compute and Data Analysis.
    [92]
    Raja Jurdak, Kun Zhao, Jiajun Liu, Maurice AbouJaoude, Mark Cameron, and David Newth. 2015. Understanding human mobility from twitter. PLoS One 10, 7 (2015), 1–16.
    [93]
    Yiannis Kamarianakis and Poulicos Prastacos. 2003. Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches. Transport. Res. Rec. 1857, 1 (2003), 74–84.
    [94]
    Yiannis Kamarianakis and Poulicos Prastacos. 2005. Space–time modeling of traffic flow. Comput. Geosci. 31, 2 (2005), 119–133.
    [95]
    Yuhao Kang, Song Gao, Yunlei Liang, Mingxiao Li, Jinmeng Rao, and Jake Kruse. 2020. Multiscale dynamic human mobility flow dataset in the US during the COVID-19 epidemic. Sci. Data 7, 1 (2020), 1–13.
    [96]
    Dmytro Karamshuk, Chiara Boldrini, Marco Conti, and Andrea Passarella. 2011. Human mobility models for opportunistic networks. IEEE Commun. Mag. 49, 12 (2011), 157–165.
    [97]
    David Karemera, Victor Iwuagwu Oguledo, and Bobby Davis. 2000. A gravity model analysis of international migration to North America. Appl. Econ. 32, 13 (2000), 1745–1755.
    [98]
    L. Khaidem, M. Luca, F. Yang, A. Anand, B. Lepri, and W. Dong. 2020. Optimizing transportation dynamics at a city-scale using a reinforcement learning framework. IEEE Access 8 (2020), 171528–171541.
    [99]
    Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2020. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 8 (2020).
    [100]
    Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational Bayes. In A Field Guide to Dynamical Recurrent Networks. Wiley-IEEE.
    [101]
    Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha Laurila. 2010. Towards rich mobile phone datasets: Lausanne data collection campaign. Proc. ICPS, Berlin 68 (2010).
    [102]
    J. F. Kolen and S. C. Kremer. 2001. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies. 237–243.
    [103]
    Dejiang Kong and Fei Wu. 2018. HST-LSTM: A hierarchical spatial-temporal long-short term memory network for location prediction. In Proceedings of the International Joint Conference on Artificial Intelligence. 2341–2347.
    [104]
    Vartika Koolwal and Krishna Kumar Mohbey. 2020. A comprehensive survey on trajectory-based location prediction. Iran J. Comput. Sci. 3, 2 (2020), 65–91.
    [105]
    Moritz U. G. Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David M. Pigott, Louis Du Plessis, Nuno R. Faria, Ruoran Li, William P. Hanage, et al. 2020. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 6490 (2020), 493–497.
    [106]
    Mark A. Kramer. 1991. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 2 (1991), 233–243.
    [107]
    Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097–1105.
    [108]
    Vaibhav Kulkarni, Natasa Tagasovska, Thibault Vatter, and Benoit Garbinato. 2018. Generative models for simulating mobility trajectories. arXiv:1811.12801 (2018).
    [109]
    Shengjie Lai, Andrea Farnham, Nick W. Ruktanonchai, and Andrew J. Tatem. 2019. Measuring mobility, disease connectivity and individual risk: A review of using mobile phone data and health for travel medicine. J. Trav. Med. 26, 3 (2019).
    [110]
    Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Olivier Bornet, Trinh-Minh-Tri Do, Olivier Dousse, Julien Eberle, Markus Miettinen et al. 2012. The Mobile Data Challenge: Big Data for Mobile Computing Research. Technical Report. Nokia.
    [111]
    Sangsoo Lee and Daniel B. Fambro. 1999. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transport. Res. Rec. 1678, 1 (1999), 179–188.
    [112]
    Maxime Lenormand, Aleix Bassolas, and José J. Ramasco. 2016. Systematic comparison of trip distribution laws and models. J. Transport Geog. 51 (2016), 158–169.
    [113]
    Wei Li, Wei Tao, Junyang Qiu, Xin Liu, Xingyu Zhou, and Zhisong Pan. 2019. Densely connected convolutional networks with attention LSTM for crowd flows prediction. IEEE Access 7 (2019), 140488–140498.
    [114]
    Xinhai Li, Huidong Tian, Dejian Lai, and Zhibin Zhang. 2011. Validation of the gravity model in predicting the global spread of influenza. Int. J. Environ. Res. Pub. Health 8, 8 (2011), 3134–3143.
    [115]
    Yuan Liao, Sonia Yeh, and Gustavo S. Jeuken. 2019. From individual to collective behaviours: Exploring population heterogeneity of human mobility based on social media data. EPJ Data Sci. 8, 1 (2019), 34.
    [116]
    Ziqian Lin, Jie Feng, Ziyang Lu, Yong Li, and Depeng Jin. 2019. DeepSTN+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 1020–1027.
    [117]
    Lingbo Liu, Jiajie Zhen, Guanbin Li, Geng Zhan, Zhaocheng He, Bowen Du, and Liang Lin. 2020. Dynamic spatial-temporal representation learning for traffic flow prediction. IEEE Trans. Intell. Transport. Syst. (2020).
    [118]
    Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the next location: A recurrent model with spatial and temporal contexts. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.
    [119]
    Xi Liu, Hanzhou Chen, and Clio Andris. 2018. trajGANs: Using generative adversarial networks for geo-privacy protection of trajectory data (Vision paper). In Proceedings of the Location Privacy and Security Workshop. 1–7.
    [120]
    Zhicheng Liu, Fabio Miranda, Weiting Xiong, Junyan Yang, Qiao Wang, and Claudio Silva. 2020. Learning geo-contextual embeddings for commuting flow prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 808–816.
    [121]
    Massimiliano Luca, Gianni Barlacchi, Nuria Oliver, and Bruno Lepri. 2021. Leveraging Mobile Phone Data for Migration Flows. arxiv:cs.CY/2105.14956
    [122]
    Jianming Lv, Qing Li, Qinghui Sun, and Xintong Wang. 2018. T-CONV: A convolutional neural network for multi-scale taxi trajectory prediction. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp). 82–89.
    [123]
    Jean Damascène Mazimpaka and Sabine Timpf. 2016. Trajectory data mining: A review of methods and applications. J. Spatial Inf. Sci. 2016, 13 (2016), 61–99.
    [124]
    D. J. Mir, S. Isaacman, R. Cáceres, M. Martonosi, and R. N. Wright. 2013. DP-WHERE: Differentially private modeling of human mobility. In Proceedings of the IEEE International Conference on Big Data. 580–588.
    [125]
    Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009. WhereNext: A location predictor on trajectory pattern mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 637–646.
    [126]
    C. K. Moorthy and B. G. Ratcliffe. 1988. Short term traffic forecasting using time series methods. Transport. Plan. Technol. 12, 1 (1988), 45–56.
    [127]
    Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis Damas. 2013. Predicting taxi–passenger demand using streaming data. IEEE Trans. Intell. Transport. Syst. 14, 3 (2013), 1393–1402.
    [128]
    Lablack Mourad, Heng Qi, Yanming Shen, and Baocai Yin. 2019. ASTIR: Spatio-temporal data mining for crowd flow prediction. IEEE Access 7 (2019), 175159–175165.
    [129]
    Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil, and Cecilia Mascolo. 2012. A tale of many cities: Universal patterns in human urban mobility. PLoS One 7, 5 (2012), 1–10.
    [130]
    M. M. Nyhan, I. Kloog, R. Britter, C. Ratti, and P. Koutrakis. 2019. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J. Expos. Sci. Environ. Epidemiol. 29, 2 (2019), 238.
    [131]
    Nuria Oliver, Bruno Lepri, Harald Sterly, Renaud Lambiotte, Sébastien Deletaille, Marco De Nadai, Emmanuel Letouzé, Albert Ali Salah, Richard Benjamins, Ciro Cattuto et al. 2020. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances 6, 23 (2020), eabc0764.
    [132]
    Kun Ouyang, Reza Shokri, David S. Rosenblum, and Wenzhuo Yang. 2018. A non-parametric generative model for human trajectories. In Proceedings of the International Joint Conference on Artificial Intelligence. 3812–3817.
    [133]
    Xi Ouyang, Chaoyun Zhang, Pan Zhou, Hao Jiang, and Shimin Gong. 2016. DeepSpace: An online deep learning framework for mobile big data to understand human mobility patterns. arXiv:1610.07009 (2016).
    [134]
    Luca Pappalardo, Giuliano Cornacchia, Victor Navarro, Loreto Bravo, and Leo Ferres. 2020. A dataset to assess mobility changes in Chile following local quarantines. arxiv:physics.soc-ph/2011.12162.
    [135]
    Luca Pappalardo, Leo Ferres, Manuel Sacasa, Ciro Cattuto, and Loreto Bravo. 2020. An individual-level ground truth dataset for home location detection. arxiv:2010.08814.
    [136]
    Luca Pappalardo, Leo Ferres, Manuel Sacasa, Ciro Cattuto, and Loreto Bravo. 2021. Evaluation of home detection algorithms on mobile phone data using individual-level ground truth. EPJ Data Sci. 10, 1 (2021), 29. DOI:https://doi.org/10.1140/epjds/s13688-021-00284-9
    [137]
    Luca Pappalardo, Salvatore Rinzivillo, Zehui Qu, Dino Pedreschi, and Fosca Giannotti. 2013. Understanding the patterns of car travel. Eur. Phys. J. Special Topics 215, 1 (2013), 61–73.
    [138]
    Luca Pappalardo and Filippo Simini. 2018. Data-driven generation of spatio-temporal routines in human mobility. Data Mining Knowl. Discov. 32, 3 (2018), 787–829.
    [139]
    Luca Pappalardo, F. Simini, G. Barlacchi, and R. Pellungrini. 2019. scikit-mobility: A Python library for the analysis, generation and risk assessment of mobility data. arXiv:1907.07062 (2019).
    [140]
    Luca Pappalardo, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti, and Albert-László Barabási. 2015. Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 1 (2015), 8166.
    [141]
    Luca Pappalardo, Maarten Vanhoof, Lorenzo Gabrielli, Zbigniew Smoreda, Dino Pedreschi, and Fosca Giannotti. 2016. An analytical framework to nowcast well-being using mobile phone data. Int. J. Data Sci. Analyt. 2, 1 (2016), 75–92.
    [142]
    Roberto Patuelli, Aura Reggiani, Sean P. Gorman, Peter Nijkamp, and Franz-Josef Bade. 2007. Network analysis of commuting flows: A comparative static approach to German data. Netw. Spatial Econ. 7, 4 (2007), 315–331.
    [143]
    Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. 2017. A data mining approach to assess privacy risk in human mobility data. ACM Trans. Intell. Syst. Technol. 9, 3 (2017).
    [144]
    R. Pellungrini, L. Pappalardo, F. Simini, and A. Monreale. 2020. Modeling adversarial behavior against mobility data privacy. IEEE Trans. Intell. Transport. Syst. (2020), 1–14.
    [145]
    Emanuele Pepe, Paolo Bajardi, Laetitia Gauvin, Filippo Privitera, Brennan Lake, Ciro Cattuto, and Michele Tizzoni. 2020. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Sci. Data 7, 1 (2020), 1–7.
    [146]
    Christos Perentis, Michele Vescovi, Chiara Leonardi, Corrado Moiso, Mirco Musolesi, Fabio Pianesi, and Bruno Lepri. 2017. Anonymous or not? Understanding the factors affecting personal mobile data disclosure. ACM Trans. Internet Technol. 17, 2 (2017).
    [147]
    Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2009. CRAWDAD dataset epfl/mobility (v. 2009-02-24). https://crawdad.org/epfl/mobility/20090224/.
    [148]
    Rafael Prieto Curiel, Luca Pappalardo, Lorenzo Gabrielli, and Steven Richard Bishop. 2018. Gravity and scaling laws of city to city migration. PLoS One 13, 7 (07 2018), 1–19. DOI:https://doi.org/10.1371/journal.pone.0199892
    [149]
    F. Rebelo, C. Soares, and R. J. F. Rossetti. 2015. TwitterJam: Identification of mobility patterns in urban centers based on tweets. In Proceedings of the IEEE 1st International Smart Cities Conference (ISC2). 1–6.
    [150]
    Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems. 91–99.
    [151]
    Yibin Ren, Huanfa Chen, Yong Han, Tao Cheng, Yang Zhang, and Ge Chen. 2020. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes. Int. J. Geog. Inf. Sci. 34, 4 (2020), 802–823.
    [152]
    Rafael Reuveny. 2007. Climate change-induced migration and violent conflict. Polit. Geog. 26, 6 (2007), 656–673.
    [153]
    S. Rinzivillo, L. Gabrielli, M. Nanni, L. Pappalardo, D. Pedreschi, and F. Giannotti. 2014. The purpose of motion: Learning activities from individual mobility networks. In Proceedings of the International Conference on Data Science and Advanced Analytics (DSAA). 312–318.
    [154]
    Maria Riveiro, Giuliana Pallotta, and Michele Vespe. 2018. Maritime anomaly detection: A review. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 8, 5 (2018), e1266.
    [155]
    Can Rong, Jie Feng, and Yong Li. 2019. Deep learning models for population flow generation from aggregated mobility data. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the ACM International Symposium on Wearable Computers. 1008–1013.
    [156]
    Alberto Rossi, Gianni Barlacchi, Monica Bianchini, and Bruno Lepri. 2019. Modelling taxi drivers’ behaviour for the next destination prediction. IEEE Trans. Intell. Transport. Syst. 21, 7 (2019).
    [157]
    Alessio Rossi, Luca Pappalardo, Paolo Cintia, F. Marcello Iaia, Javier Fernández, and Daniel Medina. 2018. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS One 13, 7 (2018), 1–15.
    [158]
    Luca Rossi, Matthew J. Williams, Christopher Stich, and Mirco Musolesi. 2015. Privacy and the city: User identification and location semantics in location-based social networks. In Proceedings of the 9th International AAAI Conference on Web and Social Media.
    [159]
    N. W. Ruktanonchai, J. R. Floyd, S. Lai, C. W. Ruktanonchai, A. Sadilek, P. Rente-Lourenco, X. Ben, A. Carioli, J. Gwinn, J. E. Steele, O. Prosper, A. Schneider, A. Oplinger, P. Eastham, and A. J. Tatem. 2020. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 369, 6510 (2020), 1465–1470.
    [160]
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Internal Representations by Error Propagation. The MIT Press, 318–362.
    [161]
    T. Russo, L. D’Andrea, A. Parisi, M. Martinelli, A. Belardinelli, F. Boccoli, I. Cignini, M. Tordoni, and S. Cataudella. 2016. Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities. Ecol. Indic. 69 (2016), 818 – 827.
    [162]
    B. A. Sabarish, R. Karthi, and T. Gireeshkumar. 2015. A survey of location prediction using trajectory mining. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. Springer, 119–127.
    [163]
    Christian M. Schneider, Vitaly Belik, Thomas Couronné, Zbigniew Smoreda, and Marta C. González. 2013. Unravelling daily human mobility motifs. J. Roy. Societ. Interf. 10, 84 (2013), 20130246.
    [164]
    M. Schuster and K. K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45, 11 (1997), 2673–2681.
    [165]
    Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Proceedings of the 11th ACM Conference on Recommender Systems. 297–305.
    [166]
    Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D: Nonlin. Phenom. 404 (2020), 132306.
    [167]
    Yan Shi, Haoran Feng, Xiongfei Geng, Xingui Tang, and Yongcai Wang. 2019. A survey of hybrid deep learning methods for traffic flow prediction. In Proceedings of the 3rd International Conference on Advances in Image Processing. Association for Computing Machinery, 133–138.
    [168]
    Seungjae Shin, Hongseok Jeon, Chunglae Cho, Seunghyun Yoon, and Taeyeon Kim. 2020. User mobility synthesis based on generative adversarial networks: A survey. In Proceedings of the 22nd International Conference on Advanced Communication Technology (ICACT). IEEE, 94–103.
    [169]
    Filippo Simini, Gianni Barlacchi, Massimiliano Luca, and Luca Pappalardo. 2020. Deep gravity: Enhancing mobility flows generation with deep neural networks and geographic information. arxiv:cs.LG/2012.00489.
    [170]
    Filippo Simini, Marta C. González, Amos Maritan, and Albert-László Barabási. 2012. A universal model for mobility and migration patterns. Nature 484, 7392 (2012), 96–100.
    [171]
    Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.).
    [172]
    Alina Sîrbu, Gennady Andrienko, Natalia Andrienko, Chiara Boldrini, Marco Conti, Fosca Giannotti, Riccardo Guidotti, Simone Bertoli, Jisu Kim, Cristina Ioana Muntean et al. 2020. Human migration: The big data perspective. Int. J. Data Sci. Analyt. 11, 4 (2020), 1–20.
    [173]
    B. H. Soleimani, E. N. De Souza, C. Hilliard, and S. Matwin. 2015. Anomaly detection in maritime data based on geometrical analysis of trajectories. In Proceedings of the 18th International Conference on Information Fusion (Fusion). 1100–1105.
    [174]
    G. Solmaz and D. Turgut. 2019. A survey of human mobility models. IEEE Access 7 (2019), 125711–125731.
    [175]
    Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. 2010. Modelling the scaling properties of human mobility. Nat. Phys. 6, 10 (2010), 818–823.
    [176]
    Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. Limits of predictability in human mobility. Science 327, 5968 (2010), 1018–1021.
    [177]
    H. Y. Song, M. S. Baek, and M. Sung. 2019. Generating human mobility route based on generative adversarial network. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS). 91–99.
    [178]
    Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Ryosuke Shibasaki, Nicholas Jing Yuan, and Xing Xie. 2016. Prediction and simulation of human mobility following natural disasters. ACM Trans. Intell. Syst. Technol. 8, 2 (2016).
    [179]
    Victor Soto, Vanessa Frias-Martinez, Jesus Virseda, and Enrique Frias-Martinez. 2011. Prediction of socioeconomic levels using cell phone records. In Proceedings of the International Conference on User Modeling, Adaptation, and Personalization. 377–388.
    [180]
    L. Spinsanti, M. Berlingerio, and L. Pappalardo. 2013. Mobility and Geo-Social Networks. Cambridge University Press, 315–333. DOI:https://doi.org/10.1017/CBO9781139128926.017
    [181]
    University of Maryland Start. 2009. Global Terrorism Database. Retrieved from http://www.start-dev.umd.edu/gtd/.
    [182]
    Iain D. Stewart, Chris A. Kennedy, Angelo Facchini, and Renata Mele. 2018. The electric city as a solution to sustainable urban development. J. Urb. Technol. 25, 1 (2018), 3–20.
    [183]
    Arkadiusz Stopczynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone, Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann. 2014. Measuring large-scale social networks with high resolution. PLoS One 9, 4 (2014), 1–24.
    [184]
    Junkai Sun, Junbo Zhang, Qiaofei Li, Xiuwen Yi, Yuxuan Liang, and Yu Zheng. 2020. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. IEEE Trans. Knowl. Data Eng. (2020).
    [185]
    Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 3104–3112.
    [186]
    Jinjun Tang, Jian Liang, Tianjian Yu, Yong Xiong, and Guoliang Zeng. 2021. Trip destination prediction based on a deep integration network by fusing multiple features from taxi trajectories. IET Intell. Transport. Syst. 15, 9 (2021).
    [187]
    Chujie Tian, Xinning Zhu, Zheng Hu, and Jian Ma. 2020. Deep spatial-temporal networks for crowd flows prediction by dilated convolutions and region-shifting attention mechanism. Appl. Intell. 50, 10 (2020), 1–14.
    [188]
    New York City TLC. 2009. New York City Taxi & Limousine Commission. Retrieved from https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
    [189]
    Eran Toch, Boaz Lerner, Eyal Ben-Zion, and Irad Ben-Gal. 2019. Analyzing large-scale human mobility data: A survey of machine learning methods and applications. Knowl. Inf. Syst. 58, 3 (2019), 501–523.
    [190]
    Marcello Tomasini, Basim Mahmood, Franco Zambonelli, Angelo Brayner, and Ronaldo Menezes. 2017. On the effect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. Pervas. Mob. Comput. 38 (2017), 215 – 232.
    [191]
    Jameson Toole, Carlos Herrera-Yague, Christian Schneider, and Marta C. Gonzalez. 2015. Coupling human mobility and social ties. J. Roy. Societ. Interf. 12 (2015).
    [192]
    Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1653–1660.
    [193]
    International Telecommunication Union. 2019. Measuring Digital Development Facts and Figures. Technical Report. International Telecommunication Union.
    [194]
    WMO UNISDR. 2012. Disaster risk and resilience. Thematic Think Piece, UN System Task Force on the Post-2015 UN Development Agenda. Technical Report. United Nations.
    [195]
    M. Vanhoof, F. Reis, T. Ploetz, and Z. Smoreda. 2018. Assessing the quality of home detection from mobile phone data for official statistics. J. Official Statist. 34, 4 (2018), 935–960.
    [196]
    Michele Vespe, Maurizio Gibin, Alfredo Alessandrini, Fabrizio Natale, Fabio Mazzarella, and Giacomo C. Osio. 2016. Mapping EU fishing activities using ship tracking data. J. Maps 12, sup1 (2016), 520–525.
    [197]
    Vasiliki Voukelatou, Lorenzo Gabrielli, Ioanna Miliou, Stefano Cresci, Rajesh Sharma, Maurizio Tesconi, and Luca Pappalardo. 2020. Measuring objective and subjective well-being: Dimensions and data sources. Int. J. Data Sci. Analyt. 11, 4 (2020).
    [198]
    Di Wang, Tomio Miwa, and Takayuki Morikawa. 2020. Big trajectory data mining: A survey of methods, applications, and services. Sensors 20, 16 (2020), 4571.
    [199]
    Jinzhong Wang, Xiangjie Kong, Feng Xia, and Lijun Sun. 2019. Urban human mobility: Data-driven modeling and prediction. ACM SIGKDD Explor. Newslett. 21, 1 (2019), 1–19.
    [200]
    Leye Wang, Xu Geng, Xiaojuan Ma, Feng Liu, and Qiang Yang. 2018. Cross-city transfer learning for deep spatio-temporal prediction. arXiv:1802.00386 (2018).
    [201]
    Senzhang Wang, Jiannong Cao, Hao Chen, Hao Peng, and Zhiqiu Huang. 2020. SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction. ACM Trans. Spatial Algor. Syst. 6, 4 (2020), 1–24.
    [202]
    Senzhang Wang, Jiannong Cao, and Philip Yu. 2020. Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. (2020).
    [203]
    Xingrui Wang, Xinyu Liu, Ziteng Lu, and Hanfang Yang. 2021. Large scale GPS trajectory generation using map based on two stage GAN. J. Data Sci. 19, 1 (2021), 126–141.
    [204]
    Yan Wang and John E. Taylor. 2018. Coupling sentiment and human mobility in natural disasters: A Twitter-based study of the 2014 South Napa Earthquake. Nat. Haz. 92, 2 (2018), 907–925.
    [205]
    Yuan Wang, Dongxiang Zhang, Ying Liu, Bo Dai, and Loo Hay Lee. 2019. Enhancing transportation systems via deep learning: A survey. Transport. Res. Part C: Emerg. Technol. 99 (2019), 144–163.
    [206]
    Billy M. Williams and Lester A. Hoel. 2003. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. J. Transport. Eng. 129, 6 (2003), 664–672.
    [207]
    Jianxin Wu. 2017. Introduction to convolutional neural networks. Nat. Key Lab for Nov. Softw. Technol. Nanjing Univ. China 5 (2017), 23.
    [208]
    Ruizhi Wu, Guangchun Luo, Junming Shao, L. Tian, and Chengzong Peng. 2018. Location prediction on trajectory data: A review. Big Data Min. Anal. 1 (2018), 108–127.
    [209]
    Peng Xie, Tianrui Li, Jia Liu, Shengdong Du, Xin Yang, and Junbo Zhang. 2020. Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf. Fusion 59 (2020), 1–12.
    [210]
    S. H. I. Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 802–810.
    [211]
    Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the International Conference on Machine Learning. 2048–2057.
    [212]
    Shuai Xu, Xiaoming Fu, Jiuxin Cao, Bo Liu, and Zhixiao Wang. 2020. Survey on user location prediction based on geo-social networking data. World Wide Web 23, 3 (2020), 1–44.
    [213]
    Takahiro Yabe, Kota Tsubouchi, and Yoshihide Sekimoto. 2017. CityFlowFragility: Measuring the fragility of people flow in cities to disasters using GPS data collected from smartphones. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 1, 3 (Sept. 2017). DOI:https://doi.org/10.1145/3130982
    [214]
    Takahiro Yabe, Kota Tsubouchi, Akihito Sudo, and Yoshihide Sekimoto. 2016. A framework for evacuation hotspot detection after large scale disasters using location data from smartphones: Case study of Kumamoto earthquake. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’16). Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/2996913.2997014
    [215]
    Zhaojin Yan, Yijia Xiao, Liang Cheng, Rong He, Xiaoguang Ruan, Xiao Zhou, Manchun Li, and Ran Bin. 2020. Exploring AIS data for intelligent maritime routes extraction. Appl. Ocean Res. 101 (2020), 102271.
    [216]
    Bing Yang, Yan Kang, Hao Li, Yachuan Zhang, Yan Yang, and Lan Zhang. 2020. Spatio-temporal expand-and-squeeze networks for crowd flow prediction in metropolis. IET Intell. Transport. Syst. 14, 5 (2020), 313–322.
    [217]
    Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, and Philippe Cudre-Mauroux. 2020. Location prediction over sparse user mobility traces using RNNs: Flashback in hidden states! In Proceedings of the 29th International Joint Conference on Artificial Intelligence. 2184–2190.
    [218]
    Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. 2019. Revisiting user mobility and social relationships in LBSNs: A hypergraph embedding approach. In the World Wide Web Conference (WWW’19). Association for Computing Machinery, 2147–2157.
    [219]
    Dingqi Yang, Daqing Zhang, Vincent W. Zheng, and Zhiyong Yu. 2014. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst., Man Cyber: Syst. 45, 1 (2014), 129–142.
    [220]
    Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. SERM: A recurrent model for next location prediction in semantic trajectories. In Proceedings of the ACM Conference on Information and Knowledge Management. 2411–2414.
    [221]
    Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence. 5668–5675.
    [222]
    Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, Yanwei Yu, and Zhenhui Li. 2018. Modeling spatial-temporal dynamics for traffic prediction. arXiv:1803.01254 (2018).
    [223]
    Xin Yao, Yong Gao, Di Zhu, Ed Manley, Jiaoe Wang, and Yu Liu. 2020. Spatial origin-destinationflow imputation using graph convolutional networks. IEEE Trans. Intell. Transport. Syst. (2020).
    [224]
    Dan Yin and Qing Yang. 2018. GANs based density distribution privacy-preservation on mobility data. Secur. Commun. Netw. 2018 (2018).
    [225]
    Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. 2020. A comprehensive survey on traffic prediction. arXiv:2004.08555 (2020).
    [226]
    Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.
    [227]
    Hao Yuan, Xinning Zhu, Zheng Hu, and Chunhong Zhang. 2020. Deep multi-view residual attention network for crowd flows prediction. Neurocomputing 404 (2020).
    [228]
    Chao Zhang, Jiawei Han, Lidan Shou, Jiajun Lu, and Thomas La Porta. 2014. Splitter: Mining fine-grained sequential patterns in semantic trajectories. Proc. VLDb Endow. 7, 9 (2014), 769–780.
    [229]
    Chao Zhang, Keyang Zhang, Quan Yuan, Luming Zhang, Tim Hanratty, and Jiawei Han. 2016. Gmove: Group-level mobility modeling using geo-tagged social media. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1305–1314.
    [230]
    Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.
    [231]
    Yahua Zhang, Anming Zhang, and Jiaoe Wang. 2020. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China. Transport Polic. 94 (2020), 34 – 42. DOI:https://doi.org/10.1016/j.tranpol.2020.05.012
    [232]
    K. Zhao, S. Tarkoma, S. Liu, and H. Vo. 2016. Urban human mobility data mining: An overview. In Proceedings of the IEEE International Conference on Big Data (Big Data). 1911–1920.
    [233]
    Liang Zhao. 2020. Event Prediction in Big Data Era: A Systematic Survey. arXiv:2007.09815 (2020).
    [234]
    Xin Zheng, Jialong Han, and Aixin Sun. 2018. A survey of location prediction on twitter. IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1652–1671.
    [236]
    Yu Zheng. 2015. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 6, 3 (2015), 1–41.
    [237]
    Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5, 3 (2014), 1–55.
    [238]
    Yu Zheng, Xing Xie, Wei-Ying Ma et al. 2010. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32–39.
    [239]
    Yirong Zhou, Hao Chen, Jun Li, Ye Wu, Jiangjiang Wu, and Luo Chen. 2019. ST-Attn: Spatial-temporal attention mechanism for multi-step citywide crowd flow prediction. In Proceedings of the International Conference on Data Mining Workshops (ICDMW). IEEE, 609–614.
    [240]
    Yirong Zhou, Ye Wu, Jiangjiang Wu, Luo Chen, and Jun Li. 2018. Refined taxi demand prediction with ST-Vec. In Proceedings of the 26th International Conference on Geoinformatics. IEEE, 1–6.
    [241]
    Wen-Yuan Zhu, Wen-Chih Peng, Ling-Jyh Chen, Kai Zheng, and Xiaofang Zhou. 2015. Modeling user mobility for location promotion in location-based social networks. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1573–1582.
    [242]
    George Kingsley Zipf. 1946. The P 1 P 2/D hypothesis: On the intercity movement of persons. Amer. Sociol. Rev. 11, 6 (1946), 677–686.
    [243]
    Ali Zonoozi, Jung-jae Kim, Xiao-Li Li, and Gao Cong. 2018. Periodic-CRN: A convolutional recurrent model for crowd density prediction with recurring periodic patterns. In Proceedings of the International Joint Conference on Artificial Intelligence. 3732–3738.

    Cited By

    View all
    • (2024)Predictability in Human Mobility: From Individual to Collective (Vision Paper)ACM Transactions on Spatial Algorithms and Systems10.1145/365664010:2(1-17)Online publication date: 1-Jul-2024
    • (2024)On the Opportunities and Challenges of Foundation Models for GeoAI (Vision Paper)ACM Transactions on Spatial Algorithms and Systems10.1145/365307010:2(1-46)Online publication date: 1-Jul-2024
    • (2024)Mobility Data Science: Perspectives and ChallengesACM Transactions on Spatial Algorithms and Systems10.1145/365215810:2(1-35)Online publication date: 1-Jul-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 55, Issue 1
    January 2023
    860 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/3492451
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 November 2021
    Accepted: 01 August 2021
    Revised: 01 June 2021
    Received: 01 December 2020
    Published in CSUR Volume 55, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Human mobility
    2. deep learning
    3. datasets
    4. next-location prediction
    5. crowd flow prediction
    6. trajectory generation
    7. trajectory
    8. mobility flows
    9. artificial intelligence

    Qualifiers

    • Survey
    • Refereed

    Funding Sources

    • EU H2020 SoBigData++

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2,253
    • Downloads (Last 6 weeks)232

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Predictability in Human Mobility: From Individual to Collective (Vision Paper)ACM Transactions on Spatial Algorithms and Systems10.1145/365664010:2(1-17)Online publication date: 1-Jul-2024
    • (2024)On the Opportunities and Challenges of Foundation Models for GeoAI (Vision Paper)ACM Transactions on Spatial Algorithms and Systems10.1145/365307010:2(1-46)Online publication date: 1-Jul-2024
    • (2024)Mobility Data Science: Perspectives and ChallengesACM Transactions on Spatial Algorithms and Systems10.1145/365215810:2(1-35)Online publication date: 1-Jul-2024
    • (2024)Learning to Generate Temporal Origin-destination Flow Based-on Urban Regional Features and Traffic InformationACM Transactions on Knowledge Discovery from Data10.1145/364914118:6(1-17)Online publication date: 20-Feb-2024
    • (2024)VesNet: A Vessel Network for Jointly Learning Route Pattern and Future TrajectoryACM Transactions on Intelligent Systems and Technology10.1145/363937015:2(1-25)Online publication date: 28-Mar-2024
    • (2024)Federated Learning for Mobility ApplicationsACM Computing Surveys10.1145/363786856:5(1-28)Online publication date: 12-Jan-2024
    • (2024)Downscaling spatial interaction with socioeconomic attributesEPJ Data Science10.1140/epjds/s13688-024-00487-w13:1Online publication date: 5-Jul-2024
    • (2024)TrajSGAN: A Semantic-Guiding Adversarial Network for Urban Trajectory GenerationIEEE Transactions on Computational Social Systems10.1109/TCSS.2023.323592311:2(1733-1743)Online publication date: Apr-2024
    • (2024)Inferring Individual Human Mobility From Sparse Check-in Data: A Temporal-Context-Aware ApproachIEEE Transactions on Computational Social Systems10.1109/TCSS.2022.323160111:1(600-611)Online publication date: Feb-2024
    • (2024)Forecasting Lifespan of Crowded Events With Acoustic Synthesis-Inspired Segmental Long Short-Term MemoryIEEE Access10.1109/ACCESS.2024.341750912(87309-87322)Online publication date: 2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media