Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3526241.3530324acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article
Open access

Side-Channel Analysis of the Random Number Generator in STM32 MCUs

Published: 06 June 2022 Publication History

Abstract

The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.

References

[1]
Melissa Azouaoui, Davide Bellizia, Ileana Buhan, Nicolas Debande, Sebastien Duval, Christophe Giraud, Eliane Jaulmes, Francois Koeune, Elisabeth Oswald, Francois-Xavier Standaert, and Carolyn Whitnall. 2020. A Systematic Appraisal of Side Channel Evaluation Strategies. Cryptology ePrint Archive, Report 2020/1347. https://ia.cr/2020/1347.
[2]
Pierre Bayon, Lilian Bossuet, Alain Aubert, and Viktor Fischer. 2013a. Electromagnetic analysis on ring oscillator-based true random number generators. In IEEE Int. Symp. on Circuits and Systems (ISCAS). 1954--1957. https://doi.org/10.1109/ISCAS.2013.6572251
[3]
Pierre Bayon, Lilian Bossuet, Alain Aubert, and Viktor Fischer. 2013b. EM radiation analysis on true random number generators: Frequency and localization retrieval method. In IEEE Asia-Pacific Int. Symp. and Exhibition on EM Compatibility.
[4]
Pierre Bayon, Lilian Bossuet, Alain Aubert, and Viktor Fischer. 2016. Fault model of electromagnetic attacks targeting ring oscillator-based true random number generators. Journal of Cryptographic Engineering, Vol. 6, 1 (April 2016), 61--74. https://doi.org/10.1007/s13389-015-0113--2
[5]
Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, Francc ois Poucheret, Bruno Robisson, and Philippe Maurine. 2012. Contactless Electromagnetic Active Attack on Ring Oscillator Based True Random Number Generator. In Constructive Side-Channel Analysis and Secure Design. Springer, 151--166.
[6]
Georg Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. 2013. Stealthy Dopant-Level Hardware Trojans. Proc. of Cryptographic Hardware and Embedded Systems (CHES'2013), LNCS 8086 (2013), 197--214.
[7]
Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analysis with a Leakage Model. In Cryptographic Hardware and Embedded Systems. Springer, 16--29.
[8]
Yang Cao, Vladimir Rozic, Bohan Yang, Josep Balasch, and Ingrid Verbauwhede. 2016. Exploring active manipulation attacks on the TERO random number generator. In 2016 IEEE 59th Int. Midwest Symp. on Circuits and Systems (MWSCAS). 1--4. https://doi.org/10.1109/MWSCAS.2016.7870007
[9]
Sreeja Chowdhury, Ana Covic, Rabin Acharya, Spencer Dupee, Fatemeh Ganji, and Domenic Forte. 2021. Physical security in the post-quantum era: A survey on side-channel analysis, random number generators, and physically unclonable functions. Journal of Cryptographic Engineering (02 2021). https://doi.org/10.1007/s13389-021-00255-w
[10]
CW308 UFO Target. 2021. https://wiki.newae.com/CW308_UFO_Target.
[11]
Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. 2019. X-DeepSCA: Cross-device deep learning side channel attack. In Proceedings of the 56th Annual Design Automation Conference 2019. 1--6.
[12]
Samaneh Ghandali, Daniel Holcomb, and Christof Paar. 2019. Temperature-Based Hardware Trojan For Ring-Oscillator-Based TRNGs. arxiv: 1910.00735 [cs.CR]
[13]
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning .MIT Press.
[14]
Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. "A testing methodology for side-channel resistance validation". In NIST Mon-Invasive Attack Testing Workshop.
[15]
Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic. 2019. Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems (2019), 148--179.
[16]
A. Theodore Markettos and Simon W. Moore. 2009. The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators. In Cryptographic Hardware and Embedded Systems - CHES 2009. Springer, 317--331.
[17]
Honorio Martin, Thomas Korak, Enrique Millán, and Michael Hutter. 2015. Fault Attacks on STRNGs: Impact of Glitches, Temperature, and Underpowering on Randomness. IEEE Transactions on Information Forensics and Security, Vol. 10 (02 2015), 266 -- 277. https://doi.org/10.1109/TIFS.2014.2374072
[18]
Honorio Martin, Pedro Martin-Holgado, Pedro Peris-Lopez, Yolanda Morilla, and Luis Entrena. 2018. On the Entropy of Oscillator-Based True Random Number Generators under Ionizing Radiation. Entropy, Vol. 20, 7 (2018). https://doi.org/10.3390/e20070513
[19]
NewAE Technology Inc. 2021. ChipWhisperer. https://newae.com/tools/chipwhisperer.
[20]
Mathieu Renauld, Francc ois-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina Kamel, and Denis Flandre. 2011. A formal study of power variability issues and side-channel attacks for nanoscale devices. In Annual Int. Conference on the Theory and Applications of Cryptographic Techniques. Springer, 109--128.
[21]
Werner Schindler and Wolfgang Killmann. 2003. Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications. In Cryptographic Hardware and Embedded Systems. Berlin, Heidelberg, 431--449.
[22]
Mathilde Soucarros, Jessy Clédière, Cécile Dumas, and Philippe Elbaz-Vincent. 2013. Fault Analysis and Evaluation of a True Random Number Generator Embedded in a Processor. J. Electron. Test., Vol. 29, 3 (2013). https://doi.org/10.1007/s10836-013--5356--1
[23]
STMicroelectronics. 2021. RM0090 Reference manual: STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439 advanced ARM-based 32-bit MCUs. https://https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405--415-stm32f407--417-stm32f427--437-and-stm32f429--439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf.
[24]
B. Sunar, W. J. Martin, and D. R. Stinson. 2007. A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks. IEEE Trans. Comput., Vol. 56, 1 (2007), 109--119.
[25]
Huanyu Wang, Martin Brisfors, Sebastian Forsmark, and Elena Dubrova. 2019. How diversity affects deep-learning side-channel attacks. In IEEE Nordic Circuits and Systems Conference (NORCAS). 1--7.
[26]
Ruize Wang, Huanyu Wang, and Elena Dubrova. 2020. Far Field EM Side-Channel Attack on AES Using Deep Learning. In Proc. of the 4th ACM Workshop on Attacks and Solutions in Hardware Security (ASHES'2020).
[27]
Yang Yu, Michail Moraitis, and Elena Dubrova. 2021. Can Deep Learning Break a True Random Number Generator" IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, 5 (2021), 1710--1714. https://doi.org/10.1109/TCSII.2021.3066338

Cited By

View all
  • (2024)Unpacking Needs ProtectionIACR Communications in Cryptology10.62056/a0fh89n4eOnline publication date: 7-Oct-2024
  • (2024)NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA SystemsIEEE Transactions on Computers10.1109/TC.2024.336595573:5(1313-1326)Online publication date: May-2024
  • (2023)Simple Authentication Method for Vehicle Monitoring IoT Device With Verifiable Data IntegrityIEEE Internet of Things Journal10.1109/JIOT.2022.322892610:8(7027-7037)Online publication date: 15-Apr-2023
  • Show More Cited By

Index Terms

  1. Side-Channel Analysis of the Random Number Generator in STM32 MCUs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GLSVLSI '22: Proceedings of the Great Lakes Symposium on VLSI 2022
    June 2022
    560 pages
    ISBN:9781450393225
    DOI:10.1145/3526241
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 June 2022

    Check for updates

    Author Tags

    1. power analysis
    2. side-channel attack
    3. true random number generator

    Qualifiers

    • Research-article

    Funding Sources

    • Swedish Research Council
    • Swedish Civil Contingencies Agency

    Conference

    GLSVLSI '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 312 of 1,156 submissions, 27%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)541
    • Downloads (Last 6 weeks)37
    Reflects downloads up to 14 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Unpacking Needs ProtectionIACR Communications in Cryptology10.62056/a0fh89n4eOnline publication date: 7-Oct-2024
    • (2024)NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA SystemsIEEE Transactions on Computers10.1109/TC.2024.336595573:5(1313-1326)Online publication date: May-2024
    • (2023)Simple Authentication Method for Vehicle Monitoring IoT Device With Verifiable Data IntegrityIEEE Internet of Things Journal10.1109/JIOT.2022.322892610:8(7027-7037)Online publication date: 15-Apr-2023
    • (2023)A New Fast and Side-Channel Resistant AES Hardware Architecture2023 IEEE International Conference on Cyber Security and Resilience (CSR)10.1109/CSR57506.2023.10224984(572-579)Online publication date: 31-Jul-2023
    • (2023)A side-channel attack on a masked and shuffled software implementation of SaberJournal of Cryptographic Engineering10.1007/s13389-023-00315-313:4(443-460)Online publication date: 25-Apr-2023

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media