Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An Improved Bound for Weak Epsilon-nets in the Plane

Published: 27 October 2022 Publication History
  • Get Citation Alerts
  • Abstract

    We show that for any finite point set P in the plane and ϵ > 0 there exist \( O(\tfrac{1}{{\epsilon }^{3/2+\gamma }}) \) points in ℝ2, for arbitrary small γ > 0, that pierce every convex set K with |KP|> ϵ |P|. This is the first improvement of the bound of \( O(\tfrac{1}{{\epsilon }^2}) \) that was obtained in 1992 by Alon, Bárány, Füredi, and Kleitman for general point sets in the plane.

    References

    [1]
    P. K. Agarwal and J. Matousek. 1994. On range searching with semialgebraic sets. Discr. Comput. Geom. 11 (1994), 393–418.
    [2]
    N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. 1992. Point selections and weak \( {\epsilon } \) -nets for convex hulls. Comb. Prob. Comput. 1 (1992), 189–200.
    [3]
    N. Alon. 2012. A non-linear lower bound for planar epsilon-nets. Discr. Comput. Geom. 47 (2012), 235–244.
    [4]
    N. Alon and G. Kalai. 1995. Bounding the piercing number. Discr. Comput. Geom. 13 (1995), 245–256.
    [5]
    N. Alon, G. Kalai, R. Meshulam, and J. Matoušek. 2001. Transversal numbers for hypergraphs arising in geometry. Adv. Appl. Math 29 (2001), 79–101.
    [6]
    N. Alon, H. Kaplan, G. Nivasch, M. Sharir, and S. Smorodinsky. 2008. Weak \( {\epsilon } \) -nets and interval chains. Combinatorica 10 (1990), 175–183.
    [7]
    N. Alon and D. J. Kleitman. 1992. Piercing convex sets and the Hadwiger-Debrunner (p,q)-problem. Adv. Math. 96, 1 (1992), 103–112.
    [8]
    B. Aronov, E. Ezra, and M. Sharir. 2010. Small-size epsilon nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39 (2010), 3248–3282.
    [9]
    B. Aronov, M. Pellegrini, and M. Sharir. 1993. On the zone of a surface in a hyperplane arrangement. Discr. Comput. Geom. 9, 2 (1993), 177–186.
    [10]
    J. Balogh, R. Morris, and W. Samotij. 2015. Independent sets in hypergraphs. J. AMS 28 (2015), 669–709.
    [11]
    J. Balogh and J. Solymosi. 2018. On the number of points in general position in the plane. Disc. Anal. 16 (2018), 1–20.
    [12]
    I. Bárány, Z. Füredi, and L. Lovász. 1990. On the number of halving planes. Discr. Comput. Geom. 10, 2 (1990), 175–183.
    [13]
    H. Brönnimann and M. T. Goodrich. 1995. Almost optimal set covers in finite VC-dimension. Discr. Comput. Geom. 14, 4 (1995), 463–479.
    [14]
    B. Bukh, J. Matousek, and G. Nivasch. 2011. Lower bounds for weak epsilon-nets and stair-convexity. Isr. J. Math. 182 (2011), 199–228.
    [15]
    Ph. G. Bradford and V. Capoyleas. 1997. Weak epsilon-nets for points on a hypersphere. Discr. Comput. Geom. 18, 1 (1997), 83–91.
    [16]
    T. M. Chan. 2012. Optimal partition trees. Discr. Comput. Geom. 47 (2012), 661–690.
    [17]
    B. Chazelle and E. Welzl. 1989. Quasi-optimal range searching in spaces of finite VC-dimension. Discr. Comput. Geom. 4 (1989), 467–489.
    [18]
    B. Chazelle. 2000. The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York, NY.
    [19]
    B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, M. Sharir, and E. Welzl. 1995. Improved bounds on weak epsilon-nets for convex sets. Discr. Comput. Geom. 13 (1995), 1–15.
    [20]
    B. Chazelle and J. Friedman. 1990. A deterministic view of random sampling and its use in geometry. Combinatorica 10, 3 (1990), 229–249.
    [21]
    K. L. Clarkson. 1999. Nearest neighbor queries in metric spaces. Discr. Comput. Geom. 22, 1 (1999), 63–93.
    [22]
    K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl. 1990. Combinatorial complexity bounds for arrangement of curves and spheres. Discr. Comput. Geom. 5 (1990), 99–160.
    [23]
    K. L. Clarkson and K. R. Varadarajan. 2007. Improved approximation algorithms for geometric set cover. Discr. Comput. Geom. 37, 1 (2007), 430–58.
    [24]
    G. Even, D. Rawitz, and S. Shahar. 2005. Hitting sets when the VC-dimension is small. Inf. Process. Lett. 95, 2 (2005), 358–362.
    [25]
    H. Furstenberg and Y. Katznelson. 1991. A density version of the Hales-Jewett theorem. J. Anal. Math. 57 (1991), 64–119, 1991.
    [26]
    J. E. Goodman, R. Pollack, and R. Wenger. 1993. Geometric transversal theory. InNew Trends in Discrete and Computational Geometry, J. Pach (Ed.). Springer Verlag, Berlin, 163–198.
    [27]
    H. Hadwiger and H. Debrunner. 1957. Über eine variante zum Hellyschen satz. Arch. Math. 8, 4 (1957), 309–313.
    [28]
    D. Halperin and M. Sharir. 1994. New bounds for lower envelopes in three dimensions, with applications to visbility in terrains. Discr. Comput. Geom. 12 (1994), 313–326.
    [29]
    S. Har-Peled and M. Jones. 2019. Journey to the center of the point set. In Proceedings of the 35th International Symposium Computational Geometry (SOCG’19). Article 41.
    [30]
    D. Haussler and E. Welzl. 1987. \( \varepsilon \) -nets and simplex range queries. Discr. Comput. Geom. 2 (1987), 127–151.
    [31]
    S. Hoory, N. Linial, and A. Wigderson. 2006. Expander graphs and their applications. Bull. Am. Math. Soc. 43 (2006), 439–561.
    [32]
    C. Keller and S. Smorodinsky. 2020. A new lower bound on hadwiger-debrunner numbers in the plane. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA’20). 1155–1169.
    [33]
    C. Keller, S. Smorodinsky, and G. Tardos. 2018. Improved bounds for Hadwiger-Debrunner numbers. Isr. J. Math. 225, 2 (2018), 925–945.
    [34]
    J. Kolmós, J. Pach, and G. J. Woeginger. 1992. Almost tight bounds for epsilon-Nets. Discr. Comput. Geom. 7 (1992), 163–173.
    [35]
    J. Matoušek. 1993. Epsilon-nets and computational geometry. In New Trends in Discrete Computational Geometry, J. Pach (Ed.). Springer, Berlin, 69–89.
    [36]
    J. Matoušek. 2002. Lectures on Discrete Geometry. Springer-Verlag, New York, NY.
    [37]
    J. Matoušek. 1992. Efficient partition trees. Discr. Comput. Geom. 8, 3 (1992), 315–334.
    [38]
    J. Matousek and U. Wagner. 2004. New constructions of weak epsilon-nets. Discr. Comput. Geom. 32, 2 (2004), 195–206.
    [39]
    J. Matousek, R. Seidel, and E. Welzl. 1990. How to net a lot with little: Small epsilon-nets for disks and halfspaces. In Proceedings of the 6th ACM Symposium on Computational Geometry. 16–22.
    [40]
    K. Mulmuley. 1993. Computational Geometry: An Introduction through Randomized Algorithms, (1st ed.). Prentice Hall.
    [41]
    N. H. Mustafa and S. Ray. 2008. Weak \( \varepsilon \) -nets have a basis of size \( O(1/\varepsilon \log 1/\varepsilon) \) . Comput. Geom. 40 (2008), 84–91.
    [42]
    N. H. Mustafa and K. Varadarajan. 2017. Epsilon-approximations and epsilon-nets. In Handbook of Discrete and Computational Geometry, J. E. Goodman, J. O’Rourke, and C. D. Tóth (Eds.), (3rd ed.). CRC Press, Boca Raton, FL.
    [43]
    J. Pach and G. Tardos. 2013. Tight lower bounds for the size of epsilon-nets. J. AMS 26 (2013), 645–658.
    [44]
    N. Rubin. 2021. Stronger bounds for weak epsilon-nets in higher dimensions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC’21). 989–1002.
    [45]
    D. Saxton and A. Thomason. 2015. Hypergraph containers. Invent. Math. 201, 3 (2015), 925–992.
    [46]
    M. Sharir. 1994. Almost tight upper bounds for lower envelopes in higher dimensions. Discr. Comput. Geom. 12 (1994), 327–345.
    [47]
    M. Sharir and P. K. Agarwal. 1995. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, NY.
    [48]
    E. Szemerédi and W. T. Trotter. 1983. Extremal problems in discrete geometry. Combinatorica 3, 3-4 (1983), 381–392.
    [49]
    V. N. Vapnik and A. Y. Chervonenkis. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appls. 16 (1971), 264–280.
    [50]
    R. Wenger. 2004. Helly-type theorems and geometric transversals. In Handbook of Discrete and Computational Geometry, (2nd Ed.), J. E. Goodman and J. O’Rourke (Eds.). Chapman & Hall/CRC Press, New York, NY.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 69, Issue 5
    October 2022
    420 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/3563903
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 October 2022
    Online AM: 10 August 2022
    Accepted: 31 May 2022
    Revised: 21 March 2022
    Received: 02 January 2020
    Published in JACM Volume 69, Issue 5

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Epsilon-nets
    2. VC-dimension
    3. convex sets
    4. piercing numbers
    5. geometric transversals
    6. arrangements of lines

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • European Unions Horizon 2020
    • Israel Science Foundation

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 150
      Total Downloads
    • Downloads (Last 12 months)50
    • Downloads (Last 6 weeks)2

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media