Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Groups with ALOGTIME-hard Word Problems and PSPACE-complete Compressed Word Problems

Published: 01 February 2023 Publication History

Abstract

We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.

References

[1]
Miklós Abért. 2005. Group laws and free subgroups in topological groups. Bull. Lond. Math. Soc. 37, 4 (2005), 525–534. DOI:
[2]
Ian Agol. 2013. The virtual Haken conjecture. Doc. Math. 18 (2013), 1045–1087.
[3]
Sanjeev Arora and Boaz Barak. 2009. Computational Complexity—A Modern Approach. Cambridge University Press.
[4]
David A. Mix Barrington. 1989. Bounded-width polynomial-size branching programs recognize exactly those languages in \({NC}^1\). J. Comput. Syst. Sci. 38, 1 (1989), 150–164. DOI:
[5]
David A. Mix Barrington and Denis Thérien. 1988. Finite monoids and the fine structure of \(NC^{1}\). J. ACM 35 (1988), 941–952.
[6]
Laurent Bartholdi, Michael Figelius, Markus Lohrey, and Armin Weiß. 2020. Groups with ALOGTIME-hard word problems and PSPACE-complete circuit value problems. In Proceedings of the 35th Computational Complexity Conference (CCC’20),LIPIcs, Vol. 169, Shubhangi Saraf (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 29:1–29:29. DOI:
[7]
Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ. 2003. Branch groups. In Handbook of Algebra, Vol. 3. Elsevier/North-Holland, Amsterdam, 989–1112. DOI:
[8]
Laurent Bartholdi and Volodymyr V. Nekrashevych. 2008. Iterated monodromy groups of quadratic polynomials. I. Groups Geom. Dynam. 2, 3 (2008), 309–336. DOI:
[9]
Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. 1997. Finite Monoids: From word to circuit evaluation. SIAM J. Comput. 26, 1 (1997), 138–152.
[10]
Richard Beigel and John Gill. 1992. Counting classes: Thresholds, parity, mods, and fewness. Theor. Comput. Sci. 103, 1 (1992), 3–23. DOI:
[11]
William W. Boone. 1959. The word problem. Ann. Math. 70, 2 (1959), 207–265.
[12]
Daniel P. Bovet, Pierluigi Crescenzi, and Riccardo Silvestri. 1992. A uniform approach to define complexity classes. Theor. Comput. Sci. 104, 2 (1992), 263–283.
[13]
John W. Cannon, William J. Floyd, and Walter R. Parry. 1996. Introductory notes on Richard Thompson’s groups. L’Enseign. Math. 42, 3 (1996), 215–256.
[14]
Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. 1998. Nondeterministic NC\({}^{1}\) computation. J. Comput. Syst. Sci. 57, 2 (1998), 200–212. DOI:
[15]
Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat. 2005. The smallest grammar problem. IEEE Trans. Inf. Theory 51, 7 (2005), 2554–2576.
[16]
Max Dehn. 1911. Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 1 (1911), 116–144. MAANADOI:
[17]
Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. 2020. The complexity of knapsack problems in wreath products. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP’20). 126:1–126:18. DOI:
[18]
Moses Ganardi and Markus Lohrey. 2019. A universal tree balancing theorem. ACM Trans. Comput. Theory 11, 1 (2019), 1:1–1:25.
[19]
Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman.
[20]
Max Garzon and Yechezkel Zalcstein. 1991. The complexity of Grigorchuk groups with application to cryptography. Theor. Comput. Sci. 88, 1 (1991), 83–98.
[21]
Rostislav I. Grigorchuk. 1980. On Burnside’s problem on periodic groups. Funkts. Anal. Prilozhen. 14, 1 (1980), 53–54.
[22]
Rostislav I. Grigorchuk and Zoran Šuniḱ. 2006. Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C. R. Math. Acad. Sci. Paris 342, 8 (2006), 545–550. DOI:
[23]
Victor S. Guba and Mark V. Sapir. 1999. On subgroups of the R. Thompson group \(F\) and other diagram groups. Mat. Sb. 190, 8 (1999), 3–60. DOI:
[24]
Narain Gupta and Saïd Sidki. 1983. On the Burnside problem for periodic groups. Math. Z. 182, 3 (1983), 385–388. DOI:
[25]
Frédéric Haglund and Daniel T. Wise. 2010. Coxeter groups are virtually special. Adv. Math. 224, 5 (2010), 1890–1903.
[26]
Ulrich Hertrampf. 1990. Relations among MOD-classes. Theor. Comput. Sci. 74, 3 (1990), 325–328. DOI:
[27]
Ulrich Hertrampf. 1994. Über Komplexitätsklassen, die mit Hilfe von k-wertigen Funktionen definiert werden. Habilitationsschrift. Universität Würzburg.
[28]
Ulrich Hertrampf. 1997. The shapes of trees. In Proceedings of the 3rd Annual International Conference on Computing and Combinatorics (COCOON’97), Lecture Notes in Computer Science, Vol. 1276. Springer, 412–421.
[29]
Ulrich Hertrampf. 2000. Algebraic acceptance mechanisms for polynomial time machines. SIGACT News 31, 2 (2000), 22–33. DOI:
[30]
Ulrich Hertrampf, Clemens Lautemann, Thomas Schwentick, Heribert Vollmer, and Klaus W. Wagner. 1993. On the power of polynomial time bit-reductions. In Proceedings of the 8th Annual Structure in Complexity Theory Conference. IEEE Computer Society Press, 200–207.
[31]
Ulrich Hertrampf, Heribert Vollmer, and Klaus Wagner. 1996. On balanced versus unbalanced computation trees. Math. Syst. Theory 29, 4 (1996), 411–421.
[32]
Yoram Hirshfeld, Mark Jerrum, and Faron Moller. 1994. A polynomial-time algorithm for deciding equivalence of normed context-free processes. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS’94). IEEE Computer Society, 623–631. DOI:
[33]
Derek Holt and Sarah Rees. 2020. The compressed word problem in relatively hyperbolic groups. Journal of Algebra 607 (2022), 305–343.
[34]
Derek F. Holt, Markus Lohrey, and Saul Schleimer. 2019. Compressed decision problems in hyperbolic groups. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science (STACS’19),LIPIcs, Vol. 126. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 37:1–37:16.
[35]
Derek F. Holt, Sarah Rees, and Claas E. Röver. 2017. Groups, Languages and Automata. London Mathematical Society Student Texts, Vol. 88. Cambridge University Press. DOI:
[36]
Birgit Jenner, Pierre McKenzie, and Denis Thérien. 1996. Logspace and logtime leaf languages. Inf. Comput. 129, 1 (1996), 21–33.
[37]
Howard J. Karloff and Walter L. Ruzzo. 1989. The iterated mod problem. Inf. Comput. 80, 3 (1989), 193–204.
[38]
Daniel König and Markus Lohrey. 2018. Evaluation of circuits over nilpotent and polycyclic groups. Algorithmica 80, 5 (2018), 1459–1492.
[39]
Daniel König and Markus Lohrey. 2018. Parallel identity testing for skew circuits with big powers and applications. Int. J. Arch. Comput. 28, 6 (2018), 979–1004.
[40]
Jörg Lehnert and Pascal Schweitzer. 2007. The co-word problem for the Higman-Thompson group is context-free. Bull. Lond. Math. Soc. 39, 2 (022007), 235–241. DOI:
[41]
Martin W. Liebeck, Eamonn A. O’Brien, Aner Shalev, and Pham Huu Tiep. 2010. The Ore conjecture. J. Eur. Math. Soc. 12, 4 (2010), 939–1008. DOI:
[42]
Yury Lifshits and Markus Lohrey. 2006. Querying and embedding compressed texts. In Proceedings of the 31th International Symposium on Mathematical Foundations of Computer Science (MFCS’06),Lecture Notes in Computer Science, Vol. 4162. Springer, 681–692.
[43]
Richard J. Lipton and Yechezkel Zalcstein. 1977. Word problems solvable in logspace. J. Assoc. Comput. Mach. 24, 3 (1977), 522–526.
[44]
Markus Lohrey. 2006. Word problems and membership problems on compressed words. SIAM J. Comput. 35, 5 (2006), 1210–1240.
[45]
Markus Lohrey. 2011. Leaf languages and string compression. Inf. Comput. 209, 6 (2011), 951–965.
[46]
Markus Lohrey. 2014. The Compressed Word Problem for Groups. Springer. DOI:
[47]
Markus Lohrey and Christian Mathissen. 2013. Isomorphism of regular trees and words. Inf. Comput. 224 (2013), 71–105.
[48]
Markus Lohrey and Armin Weiß. 2019. The power word problem. In Proceedings of the International Symposium on Mathematical Foundations of Computer Science (MFCS’19),LIPIcs, Vol. 138. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 43:1–43:15.
[49]
Philip M. Lewis II, Richard Edwin Stearns, and Juris Hartmanis. 1965. Memory bounds for recognition of context-free and context-sensitive languages. In Proceedings of the 6th Annual Symposium on Switching Circuit Theory and Logical Design. IEEE Computer Society, 191–202.
[50]
Kurt Mehlhorn, R. Sundar, and Christian Uhrig. 1994. Maintaining dynamic sequences under equality-tests in polylogarithmic time. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94). ACM/SIAM, 213–222. http://dl.acm.org/citation.cfm?id=314464.314496.
[51]
Volodymyr Nekrashevych. 2005. Self-similar Groups. Mathematical Surveys and Monographs, Vol. 117. American Mathematical Society, Providence, RI. DOI:
[52]
Piotr S. Novikov. 1955. On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov (1955), 1–143.
[53]
Wojciech Plandowski. 1994. Testing equivalence of morphisms on context-free languages. In Proceedings of the Second Annual European Symposium on Algorithms (ESA’94),Lecture Notes in Computer Science, Vol. 855. Springer, 460–470. DOI:
[54]
David Robinson. 1993. Parallel Algorithms for Group Word Problems. Ph. D. Dissertation. University of California, San Diego.
[55]
Joseph J. Rotman. 1995. An Introduction to the Theory of Groups (4th ed.). Springer.
[56]
Amir Shpilka and Amir Yehudayoff. 2010. Arithmetic circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5, 3-4 (2010), 207–388. DOI:
[57]
Hans-Ulrich Simon. 1979. Word problems for groups and contextfree recognition. In Proceedings of the International Symposium on Fundamentals of Computation Theory (FCT’79). Akademie-Verlag, 417–422.
[58]
Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing. 77–82. DOI:
[59]
Jacques Tits. 1972. Free subgroups in linear groups. J. Algebr. 20, 2 (1972), 250–270.
[60]
Heribert Vollmer. 1999. Introduction to Circuit Complexity. Springer, Berlin.
[61]
Stephan Waack. 1990. The parallel complexity of some constructions in combinatorial group theory. J. Inf. Process. Cybernet. EIK 26 (1990), 265–281.
[62]
Jan Philipp Wächter and Armin Weiß. 2020. An automaton group with PSPACE-complete word problem. In Proceedings of the 37th International Symposium on Theoretical Aspects of Computer Science (STACS’20). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 6:1–6:17. DOI:
[63]
John S. Wilson. 1980. Embedding theorems for residually finite groups. Math. Z. 174, 2 (1980), 149–157. DOI:
[64]
Daniel T. Wise. 2009. Research announcement: The structure of groups with a quasiconvex hierarchy. Electr. Res. Announce. Math. Sci. 16 (2009), 44–55.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computation Theory
ACM Transactions on Computation Theory  Volume 14, Issue 3-4
December 2022
122 pages
ISSN:1942-3454
EISSN:1942-3462
DOI:10.1145/3582881
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 February 2023
Online AM: 01 December 2022
Accepted: 24 October 2022
Revised: 10 October 2022
Received: 29 August 2021
Published in TOCT Volume 14, Issue 3-4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. NC1-hardness
  2. word problem
  3. G-programs
  4. straight-line programs
  5. non-solvable groups
  6. self-similar groups
  7. Thompson’s groups
  8. Grigorchuk’s group

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • DFG

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)4
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media