Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3579371.3589106acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article
Public Access

Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures

Published: 17 June 2023 Publication History

Abstract

Superconducting quantum devices are a leading technology for quantum computation, but they face several challenges. Gate errors, coherence errors and a lack of connectivity all contribute to low fidelity results. In particular, connectivity restrictions enforce a gate set that requires three-qubit gates to be decomposed into one- or two-qubit gates. This substantially increases the number of two-qubit gates that need to be executed. However, many quantum devices have access to higher energy levels. We can expand the qubit abstraction of |0〉 and |1〉 to a ququart which has access to the |2〉 and |3〉 state, but with shorter coherence times. This allows for two qubits to be encoded in one ququart, enabling increased virtual connectivity between physical units from two adjacent qubits to four fully connected qubits. This connectivity scheme allows us to more efficiently execute three-qubit gates natively between two physical devices.
We present direct-to-pulse implementations of several three-qubit gates, synthesized via optimal control, for compilation of three-qubit gates onto a superconducting-based architecture with access to four-level devices with the first experimental demonstration of four-level ququart gates designed through optimal control. We demonstrate strategies that temporarily use higher level states to perform Toffoli gates and always use higher level states to improve fidelities for quantum circuits. We find that these methods improve expected fidelities with increases of 2x across circuit sizes using intermediate encoding, and increases of 3x for fully-encoded ququart compilation.

References

[1]
MD SAJID ANIS, Abby-Mitchell, Héctor Abraham, AduOffei, Rochisha Agarwal, Gabriele Agliardi, Merav Aharoni, Vishnu Ajith, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Matthew Amy, Sashwat Anagolum, Anthony-Gandon, Eli Arbel, Abraham Asfaw, Anish Athalye, Artur Avkhadiev, Carlos Azaustre, PRATHAMESH BHOLE, Abhik Banerjee, Santanu Banerjee, Will Bang, Aman Bansal, Panagiotis Barkoutsos, Ashish Barnawal, George Barron, George S. Barron, Luciano Bello, Yael Ben-Haim, M. Chandler Bennett, Daniel Bevenius, Dhruv Bhatnagar, Prakhar Bhatnagar, Arjun Bhobe, Paolo Bianchini, Lev S. Bishop, Carsten Blank, Sorin Bolos, Soham Bopardikar, Samuel Bosch, Sebastian Brandhofer, Brandon, Sergey Bravyi, Nick Bronn, Bryce-Fuller, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adam Carriker, Ivan Carvalho, Adrian Chen, Chun-Fu Chen, Edward Chen, Jielun (Chris) Chen, Richard Chen, Franck Chevallier, Kartik Chinda, Rathish Cholarajan, Jerry M. Chow, Spencer Churchill, CisterMoke, Christian Claus, Christian Clauss, Caleb Clothier, Romilly Cocking, Ryan Cocuzzo, Jordan Connor, Filipe Correa, Zachary Crockett, Abigail J. Cross, Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales, Navaneeth D, Sean Dague, Tareq El Dandachi, Animesh N. Dangwal, Jonathan Daniel, Marcus Daniels, Matthieu Dartiailh, Abdón Rodríguez Davila, Faisal Debouni, Anton Dekusar, Amol Deshmukh, Mohit Deshpande, Delton Ding, Jun Doi, Eli M. Dow, Patrick Downing, Eric Drechsler, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi, Pieter Eendebak, Daniel Egger, ElePT, Emilio, Alberto Espiricueta, Mark Everitt, Davide Facoetti, Farida, Paco Martín Fernández, Samuele Ferracin, Davide Ferrari, Axel Hernández Ferrera, Romain Fouilland, Albert Frisch, Andreas Fuhrer, Bryce Fuller, MELVIN GEORGE, Julien Gacon, Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Tanya Garg, Shelly Garion, James R. Garrison, Jim Garrison, Tim Gates, Hristo Georgiev, Leron Gil, Austin Gilliam, Aditya Giridharan, Glen, Juan Gomez-Mosquera, Gonzalo, Salvador de la Puente González, Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, Dani Guijo, John A. Gunnels, Harshit Gupta, Naman Gupta, Jakob M. Günther, Mikael Haglund, Isabel Haide, Ikko Hamamura, Omar Costa Hamido, Frank Harkins, Kevin Hartman, Areeq Hasan, Vojtech Havlicek, Joe Hellmers, \Lukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Chih-Han Huang, Junye Huang, Rolf Huisman, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Ishwor, Raban Iten, Toshinari Itoko, Alexander Ivrii, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Qian Jianhua, Madhav Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-Shoemaker, JosDenmark, JoshDumo, John Judge, Tal Kachmann, Akshay Kale, Naoki Kanazawa, Jessica Kane, Kang-Bae, Annanay Kapila, Anton Karazeev, Paul Kassebaum, Tobias Kehrer, Josh Kelso, Scott Kelso, Hugo van Kemenade, Vismai Khanderao, Spencer King, Yuri Kobayashi, Kovi11Day, Arseny Kovyrshin, Rajiv Krishnakumar, Pradeep Krishnamurthy, Vivek Krishnan, Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, Enrique Lacal, Raphaël Lambert, Haggai Landa, John Lapeyre, Joe Latone, Scott Lawrence, Christina Lee, Gushu Li, Tan Jun Liang, Jake Lishman, Dennis Liu, Peng Liu, Lolcroc, Abhishek K. M, Liam Madden, Yunho Maeng, Saurav Maheshkar, Kahan Majmudar, Aleksei Malyshev, Mohamed El Mandouh, Joshua Manela, Manjula, Jakub Marecek, Manoel Marques, Kunal Marwaha, Dmitri Maslov, Pawe\l Maszota, Dolph Mathews, Atsushi Matsuo, Farai Mazhandu, Doug McClure, Maureen McElaney, Cameron McGarry, David McKay, Dan McPherson, Srujan Meesala, Dekel Meirom, Corey Mendell, Thomas Metcalfe, Martin Mevissen, Andrew Meyer, Antonio Mezzacapo, Rohit Midha, Daniel Miller, Hannah Miller, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Alejandro Montanez, Gabriel Monteiro, Michael Duane Mooring, Renier Morales, Niall Moran, David Morcuende, Seif Mostafa, Mario Motta, Romain Moyard, Prakash Murali, Daiki Murata, Jan Müggenburg, Tristan NEMOZ, David Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Aziz Ngoueya, Thien Nguyen, Johan Nicander, Nick-Singstock, Pradeep Niroula, Hassi Norlen, NuoWenLei, Lee James O'Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Tamiya Onodera, Raul Otaolea, Steven Oud, Dan Padilha, Hanhee Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi, Vincent R. Pascuzzi, Simone Perriello, Eric Peterson, Anna Phan, Kuba Pilch, Francesco Piro, Marco Pistoia, Christophe Piveteau, Julia Plewa, Pierre Pocreau, Alejandro Pozas-Kerstjens, Rafa\l Pracht, Milos Prokop, Viktor Prutyanov, Sumit Puri, Daniel Puzzuoli, Pythonix, Jesús Pérez, Quant02, Quintiii, Rafey Iqbal Rahman, Arun Raja, Roshan Rajeev, Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond, Oliver Reardon-Smith, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Matt Riedemann, Rietesh, Drew Risinger, Pedro Rivero, Marcello La Rocca, Diego M. Rodríguez, Rohith Karur, Ben Rosand, Max Rossmannek, Mingi Ryu, Tharrmashastha SAPV, Nahum Rosa Cruz Sa, Arijit Saha, Abdullah Ash Saki, Sankalp Sanand, Martin Sandberg, Hirmay Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad Sathaye, Niko Savola, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute, Mark Schulterbrandt, Joachim Schwarm, James Seaward, Sergi, Ismael Faro Sertage, Kanav Setia, Freya Shah, Nathan Shammah, Will Shanks, Rohan Sharma, Yunong Shi, Jonathan Shoemaker, Adenilton Silva, Andrea Simonetto, Deeksha Singh, Divyanshu Singh, Parmeet Singh, Phattharaporn Singkanipa, Yukio Siraichi, Siri, Jesús Sistos, Iskandar Sitdikov, Seyon Sivarajah, Slavikmew, Magnus Berg Sletfjerding, John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov, Igor Sokolov, Vicente P. Soloviev, SooluThomas, Starfish, Dominik Steenken, Matt Stypulkoski, Adrien Suau, Shaojun Sun, Kevin J. Sung, Makoto Suwama, Oskar S\lowik, Hitomi Takahashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu Tillet, Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la Torre, Juan Luis Sánchez Toural, Kenso Trabing, Matthew Treinish, Dimitar Trenev, TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra Tulsi, Doğukan Tuna, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Adish Vartak, Almudena Carrera Vazquez, Prajjwal Vijaywargiya, Victor Villar, Bhargav Vishnu, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Johannes Weidenfeller, Rafal Wieczorek, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, WinterSoldier, Jack J. Woehr, Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Steve Wood, James Wootton, Matt Wright, Lucy Xing, Jintao YU, Bo Yang, Unchun Yang, Jimmy Yao, Daniyar Yeralin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida, Richard Young, Jessie Yu, Lebin Yu, Yuma-Nakamura, Christopher Zachow, Laura Zdanski, Helena Zhang, Iulia Zidaru, Bastian Zimmermann, Christa Zoufal, aeddins-ibm, alexzhang13, b63, bartekbartlomiej, bcamorrison, brandhsn, chetmurthy, deeplokhande, dekel.meirom, dime10, dlasecki, ehchen, ewinston, fanizzamarco, fs1132429, gadial, galeinston, georgezhou20, georgios-ts, gruu, hhorii, hhyap, hykavitha, itoko, jeppevinkel, jessica-angel7, jezerjojo14, jliu45, johannesgreiner, jscott2, klinvill, krutik2966, ma5x, michelle4654, msuwama, nico-lgrs, nrhawkins, ntgiwsvp, ordmoj, sagar pahwa, pritamsinha2304, rithikaadiga, ryancocuzzo, saktar-unr, saswati-qiskit, septembrr, sethmerkel, sg495, shaashwat, smturro2, sternparky, strickroman, tigerjack, tsura-crisaldo, upsideon, vadebayo49, welien, willhbang, wmurphy-collabstar, yang.luh, and Mantas čepulkovskis. 2021. Qiskit: An Open-source Framework for Quantum Computing.
[2]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (Oct. 2019), 505--510.
[3]
Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Physical Review X 8, 4 (Oct. 2018). Publisher: American Physical Society (APS).
[4]
Jonathan M Baker, Casey Duckering, and Frederic T Chong. 2020. Efficient quantum circuit decompositions via intermediate qudits. In 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 303--308.
[5]
Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong. 2019. Decomposing Quantum Generalized Toffoli with an Arbitrary Number of Ancilla.
[6]
Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong. 2020. Time-sliced quantum circuit partitioning for modular architectures. In Proceedings of the 17th ACM International Conference on Computing Frontiers. ACM.
[7]
Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. 1995. Elementary gates for quantum computation. Physical Review A 52, 5 (Nov. 1995), 3457--3467.
[8]
Todd A. Brun. 2002. A simple model of quantum trajectories. American Journal of Physics 70, 7 (2002), 719--737. : https://doi.org/10.1119/1.1475328.
[9]
Alba Cervera-Lierta, Mario Krenn, Alá n Aspuru-Guzik, and Alexey Galda. 2022. Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement with Superconducting Transmon Qutrits. Physical Review Applied 17, 2 (Feb. 2022). Publisher: American Physical Society (APS).
[10]
Peter Chapman. 2020. Scaling IonQ's Quantum Computers: The Roadmap. https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap
[11]
Yulin Chi, Jieshan Huang, Zhanchuan Zhang, Jun Mao, Zinan Zhou, Xiaojiong Chen, Chonghao Zhai, Jueming Bao, Tianxiang Dai, Huihong Yuan, Ming Zhang, Daoxin Dai, Bo Tang, Yan Yang, Zhihua Li, Yunhong Ding, Leif K. Oxenløwe, Mark G. Thompson, Jeremy L. O'Brien, Yan Li, Qihuang Gong, and Jianwei Wang. 2022. A programmable qudit-based quantum processor. Nature Communications 13, 1 (Dec. 2022), 1166.
[12]
Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and Seyon Sivarajah. 2019. On the qubit routing problem. arXiv preprint arXiv:1902.08091 (2019).
[13]
Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. 2004. A new quantum ripple-carry addition circuit.
[14]
Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, and Frederic T. Chong. 2020. Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE.
[15]
Casey Duckering, Jonathan M. Baker, Andrew Litteken, and Frederic T. Chong. 2021. Orchestrated trios: compiling for efficient communication in Quantum programs with 3-Qubit gates. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. ACM.
[16]
A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff. 2011. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 7380 (Dec. 2011), 170--172. Publisher: Springer Science and Business Media LLC.
[17]
Alexey Galda, Michael Cubeddu, Naoki Kanazawa, Prineha Narang, and Nathan Earnest-Noble. 2021. Implementing a Ternary Decomposition of the Toffoli Gate on Fixed-Frequency Transmon Qutrits. arXiv:2109.00558 [quant-ph].
[18]
Jay Gambetta. 2022. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing. https://research.ibm.com/blog/ibm-quantum-roadmap-2025?social_post=6953094465&linkId=164428745
[19]
Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Kenneth R. Brown, and Frederic T. Chong. 2019. Asymptotic improvements to quantum circuits via qutrits. In Proceedings of the 46th International Symposium on Computer Architecture. ACM.
[20]
Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T. Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse. http://arxiv.org/abs/2004.11205 arXiv:2004.11205 [quant-ph].
[21]
Pranav Gokhale, Samantha Koretsky, Shilin Huang, Swarnadeep Majumder, Andrew Drucker, Kenneth R. Brown, and Frederic T. Chong. 2020. Quantum Fanout: Circuit Optimizations and Technology Modeling.
[22]
Noah Goss, Alexis Morvan, Brian Marinelli, Bradley K. Mitchell, Long B. Nguyen, Ravi K. Naik, Larry Chen, Christian Jünger, John Mark Kreikebaum, David I. Santiago, Joel J. Wallman, and Irfan Siddiqi. 2022. High-Fidelity Qutrit Entangling Gates for Superconducting Circuits. http://arxiv.org/abs/2206.07216 arXiv:2206.07216 [cond-mat, physics:quant-ph].
[23]
Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. Technical Report arXiv:quant-ph/9605043. arXiv. arXiv:quant-ph/9605043 type: article.
[24]
Stefanie Günther, N. Anders Petersson, and Jonathan L. DuBois. 2021. Quantum Optimal Control for Pure-State Preparation Using One Initial State. arXiv:2106.09148 [quant-ph] (Aug. 2021). http://arxiv.org/abs/2106.09148 arXiv: 2106.09148.
[25]
Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 12, 2 (Feb. 2019), 34. arXiv:1709.03489 [quant-ph].
[26]
Alexander D. Hill, Mark J. Hodson, Nicolas Didier, and Matthew J. Reagor. 2021. Realization of arbitrary doubly-controlled quantum phase gates.
[27]
IBM. [n. d.]. IBM Quantum. https://quantum-computing.ibm.com/ Publication Title: IBM Quantum.
[28]
S. S. Ivanov, H. S. Tonchev, and N. V. Vitanov. 2012. Time-efficient implementation of quantum search with qudits. Physical Review A 85, 6 (June 2012), 062321.
[29]
N. Khammassi, I. Ashraf, X. Fu, C.G. Almudever, and K. Bertels. 2017. QX: A high-performance quantum computer simulation platform. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. 464--469.
[30]
Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J. Glaser. 2005. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance 172, 2 (Feb. 2005), 296--305.
[31]
Yosep Kim, Alexis Morvan, Long B. Nguyen, Ravi K. Naik, Christian Jünger, Larry Chen, John Mark Kreikebaum, David I. Santiago, and Irfan Siddiqi. 2022. High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits. Nature Physics 18, 7 (May 2022), 783--788. Publisher: Springer Science and Business Media LLC.
[32]
Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. 2007. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 4 (Oct. 2007), 042319. Publisher: American Physical Society.
[33]
Ziqian Li, Tanay Roy, David Rodriguez Perez, Kan-Heng Lee, Eliot Kapit, and David I. Schuster. 2023. Autonomous error correction of a single logical qubit using two transmons.
[34]
Ziqian Li, Tanay Roy, David Rodríguez Pérez, David I. Schuster, and Eliot Kapit. 2023. Hardware efficient autonomous error correction with linear couplers in superconducting circuits.
[35]
Andrew Litteken, Jonathan M. Baker, and Frederic T. Chong. 2022. Communication Trade Offs in Intermediate Qudit Circuits. In 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL). IEEE, Dallas, TX, USA, 43--49.
[36]
Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (July 2019), 163. Publisher: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften.
[37]
MingXing Luo and XiaoJun Wang. 2014. Universal quantum computation with qudits. Science China Physics, Mechanics & Astronomy 57, 9 (Sept. 2014), 1712--1717.
[38]
Easwar Magesan, J. M. Gambetta, and Joseph Emerson. 2011. Scalable and Robust Randomized Benchmarking of Quantum Processes. Physical Review Letters 106, 18 (May 2011), 180504. Publisher: American Physical Society.
[39]
Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry M. Chow, Seth T. Merkel, Marcus P. da Silva, George A. Keefe, Mary B. Rothwell, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. 2012. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking. Physical Review Letters 109, 8 (Aug. 2012), 080505. Publisher: American Physical Society.
[40]
Daniel Miller, Timo Holz, Hermann Kampermann, and Dagmar Bruß. 2018. Propagation of generalized Pauli errors in qudit Clifford circuits. Physical Review A 98, 5 (Nov. 2018). Publisher: American Physical Society (APS).
[41]
A. Morvan, V. V. Ramasesh, M. S. Blok, J. M. Kreikebaum, K. O'Brien, L. Chen, B. K. Mitchell, R. K. Naik, D. I. Santiago, and I. Siddiqi. 2021. Qutrit Randomized Benchmarking. Physical Review Letters 126, 21 (May 2021), 210504.
[42]
Pranav Mundada, Gengyan Zhang, Thomas Hazard, and Andrew Houck. 2019. Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit. Physical Review Applied 12, 5 (Nov. 2019). Publisher: American Physical Society (APS).
[43]
Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers.
[44]
Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1107002176
[45]
Tirthak Patel, Daniel Silver, and Devesh Tiwari. 2022. Geyser: A Compilation Framework for Quantum Computing with Neutral Atoms. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22). Association for Computing Machinery, New York, NY, USA, 383--395. event-place: New York, New York.
[46]
Archimedes Pavlidis and Emmanuel Floratos. 2021. Arithmetic Circuits for Multilevel Qudits Based on Quantum Fourier Transform. Physical Review A 103, 3 (March 2021), 032417. arXiv:1707.08834 [quant-ph].
[47]
N. Anders Petersson and Fortino Garcia. 2021. Optimal Control of Closed Quantum Systems via B-Splines with Carrier Waves. arXiv:2106.14310 [quant-ph] (June 2021). http://arxiv.org/abs/2106.14310 arXiv: 2106.14310.
[48]
N. Anders Petersson, Fortino M. Garcia, Austin E. Copeland, Ylva L. Rydin, and Jonathan L. DuBois. 2020. Discrete Adjoints for Accurate Numerical Optimization with Application to Quantum Control. arXiv:2001.01013 [quant-ph] (Nov. 2020). http://arxiv.org/abs/2001.01013 arXiv: 2001.01013.
[49]
John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. Publisher: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften.
[50]
Tanay Roy, Ziqian Li, Eliot Kapit, and David I. Schuster. 2022. Realization of two-qutrit quantum algorithms on a programmable superconducting processor. http://arxiv.org/abs/2211.06523 arXiv:2211.06523 [quant-ph].
[51]
Lennart Maximilian Seifert, Jason Chadwick, Andrew Litteken, Frederic T. Chong, and Jonathan M. Baker. 2022. Time-Efficient Qudit Gates through Incremental Pulse Re-seeding. Technical Report arXiv:2206.14975. arXiv. http://arxiv.org/abs/2206.14975 arXiv:2206.14975 [quant-ph] type: article.
[52]
Sarah Sheldon, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. 2016. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Physical Review A 93, 6 (June 2016), 060302.
[53]
Vivek V. Shende and Igor L. Markov. 2008. On the CNOT-cost of TOFFOLI gates. (2008). Publisher: arXiv.
[54]
Shlomo E. Sklarz and David J. Tannor. 2002. Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schr\"odinger equation. Physical Review A 66, 5 (Nov. 2002), 053619. Publisher: American Physical Society.
[55]
Asma Taheri Monfared, Majid Haghparast, and Kamalika Datta. 2019. Quaternary Quantum/Reversible Half-Adder, Full-Adder, Parallel Adder and Parallel Adder/Subtractor Circuits. International Journal of Theoretical Physics 58, 7 (July 2019), 2184--2199.
[56]
Yuchen Wang, Zixuan Hu, Barry C. Sanders, and Sabre Kais. 2020. Qudits and High-Dimensional Quantum Computing. Frontiers in Physics 8 (2020).
[57]
Xian Wu, S. L. Tomarken, N. Anders Petersson, L. A. Martinez, Yaniv J. Rosen, and Jonathan L. DuBois. 2020. High-fidelity software-defined quantum logic on a superconducting qudit. Physical Review Letters 125, 17 (Oct. 2020), 170502. arXiv:2005.13165 [quant-ph].
[58]
Theodore J. Yoder. 2017. Universal fault-tolerant quantum computation with Bacon-Shor codes. http://arxiv.org/abs/1705.01686 arXiv:1705.01686 [quant-ph].
[59]
Ed Younis, Costin C Iancu, Wim Lavrijsen, Marc Davis, Ethan Smith, and USDOE. 2021. Berkeley Quantum Synthesis Toolkit (BQSKit) v1.

Cited By

View all
  • (2024)Compilation of Qubit Circuits to Optimized Qutrit CircuitsProceedings of the ACM on Programming Languages10.1145/36563888:PLDI(272-295)Online publication date: 20-Jun-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISCA '23: Proceedings of the 50th Annual International Symposium on Computer Architecture
June 2023
1225 pages
ISBN:9798400700958
DOI:10.1145/3579371
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 June 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. quantum computing
  2. qudit
  3. compilation

Qualifiers

  • Research-article

Funding Sources

Conference

ISCA '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 543 of 3,203 submissions, 17%

Upcoming Conference

ISCA '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)192
  • Downloads (Last 6 weeks)21
Reflects downloads up to 01 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Compilation of Qubit Circuits to Optimized Qutrit CircuitsProceedings of the ACM on Programming Languages10.1145/36563888:PLDI(272-295)Online publication date: 20-Jun-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media