Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3583781.3590251acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article

GAT-based Concentration Prediction for Random Microfluidic Mixers with Multiple Input Flow Rates

Published: 05 June 2023 Publication History

Abstract

Microfluidic biochips have emerged with significant promise and versatility in automating a variety of biochemical protocols. Accurate preparation of fluid samples with microfluidic mixers is an essential component of these protocols, where concentration prediction and generation are critical. Recently, machine learning models have been adopted in concentration prediction, which demonstrate great potential in enhancing the efficiency and scalability over the traditional finite element analysis (FEA) methods. However, the state-of-the-art machine learning-based method can only predict the concentration of microfluidic mixers with fixed input flow rates, but suffers poor prediction accuracy for multiple input flow rates. To address this issue, this paper proposes a new concentration prediction method based on the graph attention networks (GAT). By modeling each channel of the mixer as a graph node in a GAT, the proposed method efficiently and accurately predicts the generated concentration of random microfluidic mixers with multiple input flow rates. Experimental results show that compared with the state-of-the-art method, the proposed GAT-based simulation method obtains a reduction of 85% in terms of errors of predicted concentration, which validates the effectiveness of the proposed GAT model.

References

[1]
Y. Hsieh, T. Ho, K. Chakrabarty, A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31 (2012) 1656--1669.
[2]
C. D. Chin, T. Laksanasopin, Y. K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S. L. Braunstein, J. van de Wijgert, R. Sahabo, J. E. Justman, W. El-Sadr, S. K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world, NATURE MEDICINE 17 (2011) 1015--U138.
[3]
S. Srigunapalan, I. A. Eydelnant, C. A. Simmons, A. R. Wheeler, A digital mi-crofluidic platform for primary cell culture and analysis, LAB ON A CHIP 12 (2012) 369--375.
[4]
A. G. Uren, H. Mikkers, J. Kool, L. van der Weyden, A. H. Lund, C. H. Wilson, R. Rance, J. Jonkers, M. van Lohuizen, A. Berns, D. J. Adams, A high-throughput splinkerette-pcr method for the isolation and sequencing of retroviral insertion sites, NATURE PROTOCOLS 4 (2009) 789--798.
[5]
S. Einav, D. Gerber, P. D. Bryson, E. H. Sklan, M. Elazar, S. J. Maerkl, J. S. Glenn, S. R. Quake, Discovery of a hepatitis c target and its pharmacological inhibitors by microfluidic affinity analysis, NATURE BIOTECHNOLOGY 26 (2008) 1019--1027.
[6]
J. P. Hughes, S. Rees, S. B. Kalindjian, K. L. Philpott, Principles of early drug discovery, BRITISH JOURNAL OF PHARMACOLOGY 162 (2011) 1239--1249.
[7]
K. Karns, A. E. Herr, Human tear protein analysis enabled by an alkaline mi-crofluidic homogeneous immunoassay, ANALYTICAL CHEMISTRY 83 (2011) 8115--8122.
[8]
H. C. Fan, Y. J. Blumenfeld, U. Chitkara, L. Hudgins, S. R. Quake, Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing dna from maternal blood, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 105 (2008) 16266--16271.
[9]
P. Gascoyne, J. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, PROCEEDINGS OF THE IEEE 92 (2004) 22--42.
[10]
J. Wang, P. Brisk, W. H. Grover, Random design of microfluidics, LAB ON A CHIP 16 (2016) 4212--4219.
[11]
Comsol multiphysics, https://en.wikipedia.org/wiki/COMSOL_Multiphysics, 2016. Accessed 2021-2-16.
[12]
J. Wang, N. Zhang, J. Chen, V. G. J. Rodgers, P. Brisk, W. H. Grover, Finding the optimal design of a passive microfluidic mixer, LAB ON A CHIP 19 (2019) 3618--3627.
[13]
W. Ji, X. Guo, S. Pan, T.-Y. Ho, U. Schlichtmann, H. Yao, Gnn-based concentration prediction for random microfluidic mixers, in: 2022 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2022, pp. 763--768.
[14]
W. Ji, T.-Y. Ho, J. Wang, H. Yao, Microfluidic design for concentration gradient generation using artificial neural network, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 39 (2020) 2544--2557.
[15]
K. W. Oh, K. Lee, B. Ahn, E. P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy, LAB ON A CHIP 12 (2012) 515--545.
[16]
D. P. Kingma, J. Ba, Graph attention networks, arXiv abs/1710.10903 (2019). URL: http://arxiv.org/abs/1710.10903.
[17]
W. Yuan, K. He, D. Guan, L. Zhou, C. Li, Graph kernel based link prediction for signed social networks, INFORMATION FUSION 46 (2019) 1--10.
[18]
S.-H. Wang, V. V. Govindaraj, J. Manuel Gorriz, X. Zhang, Y.-D. Zhang, Covid-19 classification by fgcnet with deep feature fusion from graph convolutional network and convolutional neural network, INFORMATION FUSION 67 (2021) 208--229.
[19]
L. Zhu, B. Wan, C. Li, G. Tian, Y. Hou, K. Yuan, Dyadic relational graph convolu-tional networks for skeleton-based human interaction recognition, PATTERN RECOGNITION 115 (2021).
[20]
J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural message passing for quantum chemistry, in: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, volume 70, 2017.
[21]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), volume 32, 2019.
[22]
M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch geometric, arXiv abs/1903.02428 (2019). URL: http://arxiv.org/abs/1903.02428.
[23]
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv abs/1412.6980 (2015). URL: http://arxiv.org/abs/1412.6980

Cited By

View all

Index Terms

  1. GAT-based Concentration Prediction for Random Microfluidic Mixers with Multiple Input Flow Rates

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      GLSVLSI '23: Proceedings of the Great Lakes Symposium on VLSI 2023
      June 2023
      731 pages
      ISBN:9798400701252
      DOI:10.1145/3583781
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 June 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. graph attention network
      2. microfluidic biochips
      3. sample preparation

      Qualifiers

      • Research-article

      Funding Sources

      • the Natural Science Foundation of Beijing, China
      • the Key Program of National Natural Science Foundation of China
      • the National Natural Science Foundation of China

      Conference

      GLSVLSI '23
      Sponsor:
      GLSVLSI '23: Great Lakes Symposium on VLSI 2023
      June 5 - 7, 2023
      TN, Knoxville, USA

      Acceptance Rates

      Overall Acceptance Rate 312 of 1,156 submissions, 27%

      Upcoming Conference

      GLSVLSI '25
      Great Lakes Symposium on VLSI 2025
      June 30 - July 2, 2025
      New Orleans , LA , USA

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 169
        Total Downloads
      • Downloads (Last 12 months)39
      • Downloads (Last 6 weeks)4
      Reflects downloads up to 16 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media