Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3586183.3606752acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Reprogrammable Digital Metamaterials for Interactive Devices

Published: 29 October 2023 Publication History

Abstract

We present digital mechanical metamaterials that enable multiple computation loops and reprogrammable logic functions, making a significant step towards passive yet interactive devices. Our materials consist of many cells that transmit signals using an embedded bistable spring. When triggered, the bistable spring displaces and triggers the next cell. We integrate a recharging mechanism to recharge the bistable springs, enabling multiple computation rounds. Between the iterations, we enable reprogramming the logic functions after fabrication. We demonstrate that such materials can trigger a simple controlled actuation anywhere in the material to change the local shape, texture, stiffness, and display. This enables large-scale interactive and functional materials with no or a small number of external actuators. We showcase the capabilities of our system with various examples: a haptic floor with tunable stiffness for different VR scenarios, a display with easy-to-reconfigure messages after fabrication, or a tactile notification integrated into users’ desktops.

References

[1]
A Alderson and K L Alderson. 2007. Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221, 4 (2007), 565–575. https://doi.org/10.1243/09544100JAERO185 arXiv:https://doi.org/10.1243/09544100JAERO185
[2]
Linus Yinn Leng Ang, Yong Khiang Koh, and Heow Pueh Lee. 2017. Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control. Applied Physics Letters 111, 4 (2017), 041903. https://doi.org/10.1063/1.4995405 arXiv:https://doi.org/10.1063/1.4995405
[3]
Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin Van Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews Materials 2, 11 (2017), 1–11.
[4]
Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (jul 2010), 10 pages. https://doi.org/10.1145/1778765.1778800
[5]
T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener. 2014. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications 5, 1 (19 Jun 2014), 4130. https://doi.org/10.1038/ncomms5130
[6]
Tian Chen, Mark Pauly, and Pedro M. Reis. 2021. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 7842 (01 Jan 2021), 386–390. https://doi.org/10.1038/s41586-020-03123-5
[7]
Bastiaan Florijn, Corentin Coulais, and Martin van Hecke. 2014. Programmable Mechanical Metamaterials. Phys. Rev. Lett. 113 (Oct 2014), 175503. Issue 17. https://doi.org/10.1103/PhysRevLett.113.175503
[8]
Robert McIntyre Fowler, Alex Maselli, Pieter J. Pluimers, Spencer P. Magleby, and Larry L. Howell. 2014. Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge. Mechanism and Machine Theory 82 (2014), 203–217.
[9]
Daniel Groeger, Elena Chong Loo, and Jürgen Steimle. 2016. HotFlex: Post-Print Customization of 3D Prints Using Embedded State Change. Association for Computing Machinery, New York, NY, USA, 420–432. https://doi.org/10.1145/2858036.2858191
[10]
Liang He, Huaishu Peng, Michelle Lin, Ravikanth Konjeti, François Guimbretière, and Jon E. Froehlich. 2019. Ondulé: Designing and Controlling 3D Printable Springs. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 739–750. https://doi.org/10.1145/3332165.3347951
[11]
Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 529–539. https://doi.org/10.1145/2984511.2984540
[12]
Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. 2018. Metamaterial Textures. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173910
[13]
Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch. 2017. Digital Mechanical Metamaterials. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 977–988. https://doi.org/10.1145/3025453.3025624
[14]
Seungwoo Je, Hyunseung Lim, Kongpyung Moon, Shan-Yuan Teng, Jas Brooks, Pedro Lopes, and Andrea Bianchi. 2021. Elevate: A Walkable Pin-Array for Large Shape-Changing Terrains. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 127, 11 pages. https://doi.org/10.1145/3411764.3445454
[15]
Donghyeon Ko, Jee Bin Yim, Yujin Lee, Jaehoon Pyun, and Woohun Lee. 2021. Designing Metamaterial Cells to Enrich Thermoforming 3D Printed Object for Post-Print Modification. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 671, 12 pages. https://doi.org/10.1145/3411764.3445229
[16]
Robert Kovacs, Alexandra Ion, Pedro Lopes, Tim Oesterreich, Johannes Filter, Philipp Otto, Tobias Arndt, Nico Ring, Melvin Witte, Anton Synytsia, and Patrick Baudisch. 2018. TrussFormer: 3D Printing Large Kinetic Structures. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 113–125. https://doi.org/10.1145/3242587.3242607
[17]
Robert Kovacs, Lukas Rambold, Lukas Fritzsche, Dominik Meier, Jotaro Shigeyama, Shohei Katakura, Ran Zhang, and Patrick Baudisch. 2021. Trusscillator: A System for Fabricating Human-Scale Human-Powered Oscillating Devices. In The 34th Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New York, NY, USA, 1074–1088. https://doi.org/10.1145/3472749.3474807
[18]
Roderic Lakes. 1987. Foam Structures with a Negative Poisson’s Ratio. Science 235, 4792 (1987), 1038–1040. http://www.jstor.org/stable/1698767
[19]
David Ledo, Fraser Anderson, Ryan Schmidt, Lora Oehlberg, Saul Greenberg, and Tovi Grossman. 2017. Pineal: Bringing Passive Objects to Life with Embedded Mobile Devices. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 2583–2593. https://doi.org/10.1145/3025453.3025652
[20]
Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms. ACM Trans. Graph. 36, 4, Article 82 (jul 2017), 12 pages. https://doi.org/10.1145/3072959.3073636
[21]
Tie Mei, Zhiqiang Meng, Kejie Zhao, and Chang Qing Chen. 2021. A mechanical metamaterial with reprogrammable logical functions. Nature Communications 12, 1 (13 Dec 2021), 7234. https://doi.org/10.1038/s41467-021-27608-7
[22]
Bobak Mosadegh, Panagiotis Polygerinos, Christoph Keplinger, Sophia W Wennstedt, Robert F. Shepherd, Unmukt Gupta, Jongmin Shim, Katia Bertoldi, Conor James Walsh, and George M. Whitesides. 2014. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials 24 (2014).
[23]
T Mullin, Stéphanie Deschanel, Katia Bertoldi, and M Boyce. 2007. Pattern Transformation Triggered by Deformation. Physical review letters 99 (09 2007), 084301. https://doi.org/10.1103/PhysRevLett.99.084301
[24]
Ken Nakagaki, Joanne Leong, Jordan L. Tappa, João Wilbert, and Hiroshi Ishii. 2020. HERMITS: Dynamically Reconfiguring the Interactivity of Self-Propelled TUIs with Mechanical Shell Add-Ons. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 882–896. https://doi.org/10.1145/3379337.3415831
[25]
Ken Nakagaki, Luke Vink, Jared Counts, Daniel Windham, Daniel Leithinger, Sean Follmer, and Hiroshi Ishii. 2016. Materiable: Rendering Dynamic Material Properties in Response to Direct Physical Touch with Shape Changing Interfaces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 2764–2772. https://doi.org/10.1145/2858036.2858104
[26]
Jifei Ou, Zhao Ma, Jannik Peters, Sen Dai, Nikolaos Vlavianos, and Hiroshi Ishii. 2018. KinetiX - designing auxetic-inspired deformable material structures. Computers & Graphics 75 (2018), 72–81. https://doi.org/10.1016/j.cag.2018.06.003
[27]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (jul 2015), 12 pages. https://doi.org/10.1145/2766937
[28]
Jayson Paulose, Anne S. Meeussen, and Vincenzo Vitelli. 2015. Selective buckling via states of self-stress in topological metamaterials. Proceedings of the National Academy of Sciences 112, 25 (2015), 7639–7644. https://doi.org/10.1073/pnas.1502939112 arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1502939112
[29]
Jordan R. Raney, Neel Nadkarni, Chiara Daraio, Dennis M. Kochmann, Jennifer A. Lewis, and Katia Bertoldi. 2016. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences 113, 35 (2016), 9722–9727. https://doi.org/10.1073/pnas.1604838113 arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1604838113
[30]
Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George Fitzmaurice, and Björn Hartmann. 2014. A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA, 3–12. https://doi.org/10.1145/2642918.2647374
[31]
Martin Schmitz, Martin Herbers, Niloofar Dezfuli, Sebastian Günther, and Max Mühlhäuser. 2018. Off-Line Sensing: Memorizing Interactions in Passive 3D-Printed Objects. Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3173574.3173756
[32]
Martin Schmitz, Mohammadreza Khalilbeigi, Matthias Balwierz, Roman Lissermann, Max Mühlhäuser, and Jürgen Steimle. 2015. Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 253–258. https://doi.org/10.1145/2807442.2807503
[33]
Martin Schmitz, Jürgen Steimle, Jochen Huber, Niloofar Dezfuli, and Max Mühlhäuser. 2017. Flexibles: Deformation-Aware 3D-Printed Tangibles for Capacitive Touchscreens. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1001–1014. https://doi.org/10.1145/3025453.3025663
[34]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4, Article 136 (jul 2015), 13 pages. https://doi.org/10.1145/2766926
[35]
Yuanping Song, Robert M. Panas, Samira Chizari, Lucas A. Shaw, Julie A. Jackson, Jonathan B. Hopkins, and Andrew J. Pascall. 2019. Additively manufacturable micro-mechanical logic gates. Nature Communications 10, 1 (20 Feb 2019), 882. https://doi.org/10.1038/s41467-019-08678-0
[36]
Lingyun Sun, Yue Yang, Yu Chen, Jiaji Li, Danli Luo, Haolin Liu, Lining Yao, Ye Tao, and Guanyun Wang. 2021. ShrinCage: 4D Printing Accessories That Self-Adapt. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 433, 12 pages. https://doi.org/10.1145/3411764.3445220
[37]
Ryo Suzuki, Hooman Hedayati, Clement Zheng, James L. Bohn, Daniel Szafir, Ellen Yi-Luen Do, Mark D. Gross, and Daniel Leithinger. 2020. RoomShift: Room-Scale Dynamic Haptics for VR with Furniture-Moving Swarm Robots. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3313831.3376523
[38]
Ryo Suzuki, Ryosuke Nakayama, Dan Liu, Yasuaki Kakehi, Mark D. Gross, and Daniel Leithinger. 2020. LiftTiles: Constructive Building Blocks for Prototyping Room-Scale Shape-Changing Interfaces. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 143–151. https://doi.org/10.1145/3374920.3374941
[39]
Cesar Torres, Tim Campbell, Neil Kumar, and Eric Paulos. 2015. HapticPrint: Designing Feel Aesthetics for Digital Fabrication. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 583–591. https://doi.org/10.1145/2807442.2807492
[40]
Nirzaree Vadgama and Jürgen Steimle. 2017. Flexy: Shape-Customizable, Single-Layer, Inkjet Printable Patterns for 1D and 2D Flex Sensing. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (Yokohama, Japan) (TEI ’17). Association for Computing Machinery, New York, NY, USA, 153–162. https://doi.org/10.1145/3024969.3024989
[41]
Marynel Vázquez, Eric Brockmeyer, Ruta Desai, Chris Harrison, and Scott E. Hudson. 2015. 3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 1295–1304. https://doi.org/10.1145/2702123.2702569
[42]
U. Waheed, Connor Myant, and Sean Dobson. 2020. Boolean AND/OR mechanical logic using multi-plane mechanical metamaterials. Extreme Mechanics Letters 40 (2020), 100865.
[43]
Xiaopeng Wang, Yongyong Chen, Guojian Zhou, Tianning Chen, and Fuyin Ma. 2019. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. Journal of Sound and Vibration 459 (2019), 114867. https://doi.org/10.1016/j.jsv.2019.114867
[44]
Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. Association for Computing Machinery, New York, NY, USA, 589–598. https://doi.org/10.1145/2380116.2380190
[45]
Humphrey Yang, Tate Johnson, Ke Zhong, Dinesh Patel, Gina Olson, Carmel Majidi, Mohammad Islam, and Lining Yao. 2022. ReCompFig: Designing Dynamically Reconfigurable Kinematic Devices Using Compliant Mechanisms and Tensioning Cables. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 170, 14 pages. https://doi.org/10.1145/3491102.3502065
[46]
Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/2501988.2502037
[47]
Hiromi Yasuda, Philip R. Buskohl, Andrew Gillman, Todd D. Murphey, Susan Stepney, Richard A. Vaia, and Jordan R. Raney. 2021. Mechanical computing. Nature 598, 7879 (01 Oct 2021), 39–48. https://doi.org/10.1038/s41586-021-03623-y
[48]
Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017. Metasilicone: Design and Fabrication of Composite Silicone with Desired Mechanical Properties. ACM Trans. Graph. 36, 6, Article 240 (nov 2017), 13 pages. https://doi.org/10.1145/3130800.3130881
[49]
Hang Zhang, Jun Wu, Daining Fang, and Yihui Zhang. 2021. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation. Science Advances 7, 9 (2021), eabf1966. https://doi.org/10.1126/sciadv.abf1966 arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abf1966

Cited By

View all
  • (2024)Designing Mechanical 3D Metamaterials with Tension-Active ModulesAdjunct Proceedings of the 9th ACM Symposium on Computational Fabrication10.1145/3665662.3673261(1-3)Online publication date: 7-Jul-2024

Index Terms

  1. Reprogrammable Digital Metamaterials for Interactive Devices

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UIST '23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology
    October 2023
    1825 pages
    ISBN:9798400701320
    DOI:10.1145/3586183
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 October 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Fabrication
    2. Metamaterials
    3. Programmable Matter

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    UIST '23

    Acceptance Rates

    Overall Acceptance Rate 561 of 2,567 submissions, 22%

    Upcoming Conference

    UIST '25
    The 38th Annual ACM Symposium on User Interface Software and Technology
    September 28 - October 1, 2025
    Busan , Republic of Korea

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)270
    • Downloads (Last 6 weeks)31
    Reflects downloads up to 15 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Designing Mechanical 3D Metamaterials with Tension-Active ModulesAdjunct Proceedings of the 9th ACM Symposium on Computational Fabrication10.1145/3665662.3673261(1-3)Online publication date: 7-Jul-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media