Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3610548.3618220acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Subspace Mixed Finite Elements for Real-Time Heterogeneous Elastodynamics

Published: 11 December 2023 Publication History

Abstract

Real-time elastodynamic solvers are well-suited for the rapid simulation of homogeneous elastic materials, with high-rates generally enabled by aggressive early termination of timestep solves. Unfortunately, the introduction of strong domain heterogeneities can make these solvers slow to converge. Stopping the solve short creates visible damping artifacts and rotational errors. To address these challenges we develop a reduced mixed finite element solver that preserves rich rotational motion, even at low-iteration regimes. Specifically, this solver augments time-step solve optimizations with auxillary stretch degrees of freedom at mesh elements, and maintains consistency with the primary positional degrees of freedoms at mesh nodes via explicit constraints. We make use of a Skinning Eigenmode subspace for our positional degrees of freedom. We accelerate integration of non-linear elastic energies with a cubature approximation, placing stretch degrees of freedom at cubature points. Across a wide range of examples we demonstrate that this subspace is particularly well suited for heterogeneous material simulation. Our resulting method is a subspace mixed finite element method completely decoupled from the resolution of the mesh that is well-suited for real-time simulation of heterogeneous domains.

Supplemental Material

MP4 File
Video

References

[1]
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing Cubature for Efficient Integration of Subspace Deformations. In ACM SIGGRAPH Asia 2008 Papers (Singapore) (SIGGRAPH Asia ’08). Association for Computing Machinery, New York, NY, USA, Article 165, 10 pages. https://doi.org/10.1145/1457515.1409118
[2]
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (jul 2005), 982–990. https://doi.org/10.1145/1073204.1073300
[3]
Jernej Barbič and Yili Zhao. 2011. Real-Time Large-Deformation Substructuring. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article 91, 8 pages. https://doi.org/10.1145/1964921.1964986
[4]
Otman Benchekroun, Jiayi Eris Zhang, Siddhartha Chaudhuri, Eitan Grinspun, Yi Zhou, and Alec Jacobson. 2023. Fast Complementary Dynamics via Skinning Eigenmodes. arxiv:2303.11886 [cs.GR]
[5]
Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (jul 2018), 13 pages. https://doi.org/10.1145/3197517.3201387
[6]
Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff McDonald. 2001. Parallel programming in OpenMP. Morgan kaufmann.
[7]
Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 36, 4, Article 84 (jul 2017), 15 pages. https://doi.org/10.1145/3072959.3073669
[8]
Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-Driven Finite Elements for Geometry and Material Design. ACM Trans. Graph. 34, 4, Article 74 (jul 2015), 10 pages. https://doi.org/10.1145/2766889
[9]
Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4, Article 120 (jul 2018), 12 pages. https://doi.org/10.1145/3197517.3201386
[10]
Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1 (jan 2005), 91–101. https://doi.org/10.1109/TVCG.2005.13
[11]
François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73 (jul 2011), 10 pages. https://doi.org/10.1145/2010324.1964968
[12]
Gaël Guennebaud, Benoît Jacob, 2010. Eigen v3. http://eigen.tuxfamily.org.
[13]
Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-Space Physics. ACM Trans. Graph. 31, 4, Article 72 (jul 2012), 8 pages. https://doi.org/10.1145/2185520.2185568
[14]
Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao, and Mathieu Desbrun. 2011. Interactive Shape Interpolation through Controllable Dynamic Deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7 (jul 2011), 983–992. https://doi.org/10.1109/TVCG.2010.109
[15]
Alec Jacobson 2021. gptoolbox: Geometry Processing Toolbox. http://github.com/alecjacobson/gptoolbox.
[16]
Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4, Article 77 (jul 2012), 10 pages. https://doi.org/10.1145/2185520.2185573
[17]
Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (jul 2011), 8 pages. https://doi.org/10.1145/2010324.1964973
[18]
Alec Jacobson, Daniele Panozzo, 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.
[19]
Doug L. James and Dinesh K. Pai. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3 (jul 2002), 582–585. https://doi.org/10.1145/566654.566621
[20]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3, Article 51 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531357
[21]
Theodore Kim and Doug L. James. 2011. Physics-Based Character Skinning Using Multi-Domain Subspace Deformations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA ’11). Association for Computing Machinery, New York, NY, USA, 63–72. https://doi.org/10.1145/2019406.2019415
[22]
Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, Huamin Wang, Xiaohu Guo, Junfeng Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (apr 2020), 17 pages. https://doi.org/10.1145/3384515
[23]
David I.W. Levin. 2018. Bartels. https://libigl.github.io/.
[24]
Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (jul 2011), 12 pages. https://doi.org/10.1145/2010324.1964932
[25]
A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and Animation. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 207–214. https://doi.org/10.1145/74334.74355
[26]
R Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
[27]
Nicholas Sharp, Cristian Romero, Alec Jacobson, Etienne Vouga, Paul G Kry, David IW Levin, and Justin Solomon. 2023. Data-Free Learning of Reduced-Order Kinematics. (2023).
[28]
Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun Zhou. 2021. High-Order Differentiable Autoencoder for Nonlinear Model Reduction. ACM Trans. Graph. 40, 4, Article 68 (jul 2021), 15 pages. https://doi.org/10.1145/3450626.3459754
[29]
Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. Energetically Consistent Invertible Elasticity. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association, Goslar, DEU, 25–32.
[30]
Demetri Terzopoulos and Andrew Witkin. 1988. Physically Based Models with Rigid and Deformable Components. IEEE Comput. Graph. Appl. 8, 6 (nov 1988), 41–51. https://doi.org/10.1109/38.20317
[31]
Ty Trusty, Danny Kaufman, and David I.W. Levin. 2022. Mixed Variational Finite Elements for Implicit Simulation of Deformables. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New York, NY, USA, Article 40, 8 pages. https://doi.org/10.1145/3550469.3555418
[32]
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2013. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6, Article 213 (nov 2013), 10 pages. https://doi.org/10.1145/2508363.2508392
[33]
Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (jul 2015), 11 pages. https://doi.org/10.1145/2766952
[34]
Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting Precomputation for Reduced Deformable Simulation. ACM Trans. Graph. 34, 6, Article 243 (nov 2015), 13 pages. https://doi.org/10.1145/2816795.2818089

Index Terms

  1. Subspace Mixed Finite Elements for Real-Time Heterogeneous Elastodynamics

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SA '23: SIGGRAPH Asia 2023 Conference Papers
    December 2023
    1113 pages
    ISBN:9798400703157
    DOI:10.1145/3610548
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 December 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Heterogeneous Materials
    2. Mixed FEM

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • Ontario Early Researchers Award
    • NSERC Discovery
    • Carada Research Chairs Program

    Conference

    SA '23
    Sponsor:
    SA '23: SIGGRAPH Asia 2023
    December 12 - 15, 2023
    NSW, Sydney, Australia

    Acceptance Rates

    Overall Acceptance Rate 178 of 869 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 212
      Total Downloads
    • Downloads (Last 12 months)212
    • Downloads (Last 6 weeks)25
    Reflects downloads up to 06 Oct 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media