Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fast automatic skinning transformations

Published: 01 July 2012 Publication History

Abstract

Skinning transformations are a popular way to articulate shapes and characters. However, traditional animation interfaces require all of the skinning transformations to be specified explicitly, typically using a control structure (a rig). We propose a system where the user specifies only a subset of the degrees of freedom and the rest are automatically inferred using nonlinear, rigidity energies. By utilizing a low-order model and reformulating our energy functions accordingly, our algorithm runs orders of magnitude faster than previous methods without compromising quality. In addition to the immediate boosts in performance for existing modeling and real time animation tools, our approach also opens the door to new modes of control: disconnected skeletons combined with shape-aware inverse kinematics. With automatically generated skinning weights, our method can also be used for fast variational shape modeling.

Supplementary Material

JPG File (tp174_12.jpg)
ZIP File (a77-jacobson.zip)
Supplemental material.
MP4 File (tp174_12.mp4)

References

[1]
An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1--165:10.
[2]
Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graphi. 12, 3, 386--395.
[3]
Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3, 83.
[4]
Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1--72:8.
[5]
Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990.
[6]
Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3, 34:1--34:11.
[7]
Blair, P. 1994. Cartoon Animation. Walter Foster Publishing, Inc., Irvine, CA, USA.
[8]
Borosán, P., Howard, R., Zhang, S., and Nealen, A. 2010. Hybrid mesh editing. In Proc. EUROGRAPHICS, Short papers, 41--44.
[9]
Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 1, 213--230.
[10]
Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. SGP, 11--20.
[11]
Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.
[12]
Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38:1--38:6.
[13]
Der, K. G., Sumner, R. W., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25, 3, 1174--1179.
[14]
Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30, 4, 73:1--73:10.
[15]
Forstmann, S., and Ohya, J. 2006. Fast skeletal animation by skinned arc-spline based deformation. In Proc. EUROGRAPHICS, Short papers.
[16]
Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. 2007. Deformation styles for spline-based skeletal animation. In Proc. SCA, 141--150.
[17]
Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum 30, 8, 2246--2257.
[18]
Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2, 15:1--15:12.
[19]
Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1--119:11.
[20]
Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134.
[21]
Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. In Proc. SGP, 1449--1457.
[22]
Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141.
[23]
Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6, 165:1--165:8.
[24]
Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1--78:8.
[25]
Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1--71:9.
[26]
Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566.
[27]
Kavan, L., Collins, S., Zara, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1--105:23.
[28]
Kavan, L., Collins, S., and O'Sullivan, C. 2009. Automatic linearization of nonlinear skinning. In Proc. I3D, 49--56.
[29]
Kavan, L., Sloan, P., and O'Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327--336.
[30]
Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945--1954.
[31]
Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph. Forum 27, 2, 459--466.
[32]
Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. ACM SIGGRAPH, 165--172.
[33]
Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3, 78:1--78:10.
[34]
Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5, 1495--1504.
[35]
Manson, J., and Schaefer, S. 2011. Hierarchical deformation of locally rigid meshes. Comput. Graph. Forum 30, 8, 2387--2396.
[36]
McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 37:1--37:12.
[37]
Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400--1423.
[38]
Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3, 562--568.
[39]
Pekelny, Y., and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum 27, 2, 399--408.
[40]
Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533--540.
[41]
Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. ACM SIGGRAPH Symposium on High Performance Graphics, 135--142.
[42]
Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. ACM SIGGRAPH, 151--160.
[43]
Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81:1--81:10.
[44]
Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109--116.
[45]
Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495.
[46]
Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3, 80:1--80:7.
[47]
Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proc. SCA, 129--138.
[48]
Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3, 73.
[49]
Wareham, R., and Lasenby, J. 2008. Bone Glow: An improved method for the assignment of weights for mesh deformation. Articulated Motion and Deformable Objects, 63--71.
[50]
Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587--597.
[51]
Yang, X., Somasekharan, A., and Zhang, J. J. 2006. Curve skeleton skinning for human and creature characters. Comput. Animat. Virtual Worlds 17, 3--4, 281--292.

Cited By

View all
  • (2024)Biharmonic Coordinates and their Derivatives for Triangular 3D CagesACM Transactions on Graphics10.1145/365820843:4(1-17)Online publication date: 19-Jul-2024
  • (2024)Characteristic-Preserving Latent Space for Unpaired Cross-Domain Translation of 3D Point CloudsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328792330:8(5212-5226)Online publication date: 1-Aug-2024
  • (2024)Feature-based deformation for flow visualizationJournal of Visualization10.1007/s12650-024-00963-5Online publication date: 13-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 31, Issue 4
July 2012
935 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2185520
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2012
Published in TOG Volume 31, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. as-rigid-as-possible
  2. shape modeling
  3. skinning
  4. variational methods

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)85
  • Downloads (Last 6 weeks)8
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Biharmonic Coordinates and their Derivatives for Triangular 3D CagesACM Transactions on Graphics10.1145/365820843:4(1-17)Online publication date: 19-Jul-2024
  • (2024)Characteristic-Preserving Latent Space for Unpaired Cross-Domain Translation of 3D Point CloudsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328792330:8(5212-5226)Online publication date: 1-Aug-2024
  • (2024)Feature-based deformation for flow visualizationJournal of Visualization10.1007/s12650-024-00963-5Online publication date: 13-May-2024
  • (2023)Slippage-Preserving Reshaping of Human-Made 3D ContentACM Transactions on Graphics10.1145/361839142:6(1-18)Online publication date: 5-Dec-2023
  • (2023)Subspace Mixed Finite Elements for Real-Time Heterogeneous ElastodynamicsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618220(1-10)Online publication date: 10-Dec-2023
  • (2023)Two-Way Coupling of Skinning Transformations and Position Based DynamicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069306:3(1-18)Online publication date: 24-Aug-2023
  • (2023)Fast Complementary Dynamics via Skinning EigenmodesACM Transactions on Graphics10.1145/359240442:4(1-21)Online publication date: 26-Jul-2023
  • (2023)Winding Numbers on Discrete SurfacesACM Transactions on Graphics10.1145/359240142:4(1-17)Online publication date: 26-Jul-2023
  • (2023)Boundary Value Caching for Walk on SpheresACM Transactions on Graphics10.1145/359240042:4(1-11)Online publication date: 26-Jul-2023
  • (2023)Globally Consistent Normal Orientation for Point Clouds by Regularizing the Winding-Number FieldACM Transactions on Graphics10.1145/359212942:4(1-15)Online publication date: 26-Jul-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media