Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3641519.3657521acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article
Open access

Real-Time Hair Rendering with Hair Meshes

Published: 13 July 2024 Publication History

Abstract

Hair meshes are known to be effective for modeling and animating hair in computer graphics. We present how the hair mesh structure can be used for efficiently rendering strand-based hair models on the GPU with on-the-fly geometry generation that provides orders of magnitude reduction in storage and memory bandwidth. We use mesh shaders to carefully distribute the computation and a custom texture layout for offloading a part of the computation to the hardware texture units. We also present a set of procedural styling operations to achieve hair strand variations for a wide range of hairstyles and a consistent coordinate-frame generation approach to attach these variations to an animating/deforming hair mesh. Finally, we describe level-of-detail techniques for improving the performance of rendering distant hair models. Our results show an unprecedented level of performance with strand-based hair rendering, achieving hundreds of full hair models animated and rendered at real-time frame rates on a consumer GPU.

Supplemental Material

MP4 File
Paper video and Supplemental document
MP4 File
SIGGRAPH 2024 Paper video
MP4 File - presentation
presentation
PDF File
Supplemental document
PDF File
Paper video and Supplemental document

References

[1]
Edwin Catmull and Raphael Rom. 1974. A Class of Local Interpolating Splines. In Computer Aided Geometric Design. Academic Press, 317–326. https://doi.org/10.1016/B978-0-12-079050-0.50020-5
[2]
Menglei Chai, Jian Ren, and Sergey Tulyakov. 2020. Neural Hair Rendering. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing, Cham, 371–388.
[3]
Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair: Fully Automatic Hair Modeling from a Single Image. ACM Trans. Graph. 35, 4, Article 116 (jul 2016), 12 pages. https://doi.org/10.1145/2897824.2925961
[4]
Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A Reduced Model for Interactive Hairs. ACM Trans. Graph. 33, 4, Article 124 (jul 2014), 11 pages. https://doi.org/10.1145/2601097.2601211
[5]
A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thalmann. 1993. An integrated system for modeling, animating and rendering hair. Computer Graphics Forum 12, 3, 211–221. https://doi.org/10.1111/1467-8659.1230211 MIRALab, Geneva Univ., Switzerland.
[6]
Epic Games. 2021. Unreal Engine. https://www.unrealengine.com
[7]
Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-Stage Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph. 41, 4, Article 64 (jul 2022), 13 pages. https://doi.org/10.1145/3528223.3530165
[8]
Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, and Kui Wu. 2023. Sag-Free Initialization for Strand-Based Hybrid Hair Simulation. ACM Trans. Graph. 42, 4, Article 74 (jul 2023), 14 pages.
[9]
Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless: Seam Erasure and Seam-Aware Decoupling of Shape from Mesh Resolution. ACM Trans. Graph. 36, 6, Article 216 (nov 2017), 15 pages. https://doi.org/10.1145/3130800.3130897
[10]
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games (Burlingame, California) (MIG ’16). Association for Computing Machinery, New York, NY, USA, 49–54. https://doi.org/10.1145/2994258.2994272
[11]
Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph. 22, 3 (jul 2003), 780–791. https://doi.org/10.1145/882262.882345
[12]
Corentin Mercier, Thibault Lescoat, Pierre Roussillon, Tamy Boubekeur, and Jean-Marc Thiery. 2022. Moving Level-of-Detail Surfaces. ACM Trans. Graph. 41, 4, Article 130 (jul 2022), 10 pages. https://doi.org/10.1145/3528223.3530151
[13]
Zhong Ren, Kun Zhou, Tengfei Li, Wei Hua, and Baining Guo. 2010. Interactive Hair Rendering under Environment Lighting. In ACM SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH ’10). Association for Computing Machinery, New York, NY, USA, Article 55, 8 pages. https://doi.org/10.1145/1833349.1778792
[14]
Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chenglei Wu, Sven Behnke, and Giljoo Nam. 2022. Neural Strands: Learning Hair Geometry and Appearance from Multi-view Images. In Computer Vision – ECCV 2022, Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer Nature Switzerland, Cham, 73–89.
[15]
Thorsten Scheuermann. 2004. Practical Real-Time Hair Rendering and Shading. In ACM SIGGRAPH 2004 Sketches (Los Angeles, California) (SIGGRAPH ’04). Association for Computing Machinery, New York, NY, USA, 147. https://doi.org/10.1145/1186223.1186408
[16]
Arunachalam Somasundaram. 2015. Dynamically Controlling Hair Interpolation. In ACM SIGGRAPH 2015 Talks (Los Angeles, California) (SIGGRAPH ’15). Association for Computing Machinery, New York, NY, USA, Article 36, 1 pages.
[17]
Sarah Tariq and Louis Bavoil. 2008. Real Time Hair Simulation and Rendering on the GPU. In ACM SIGGRAPH 2008 Talks (Los Angeles, California) (SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article 37, 1 pages. https://doi.org/10.1145/1401032.1401080
[18]
Nghia Truong, Cem Yuksel, and Larry Seiler. 2020. Quadratic Approximation of Cubic Curves. Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of HPG 2020) 3, 2, Article 16 (2020), 17 pages. https://doi.org/10.1145/3406178
[19]
Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based hair geometry synthesis. In ACM SIGGRAPH 2009 Papers (New Orleans, Louisiana) (SIGGRAPH ’09). Association for Computing Machinery, New York, NY, USA, Article 56, 9 pages. https://doi.org/10.1145/1576246.1531362
[20]
Lingyu Wei, Liwen Hu, Vladimir Kim, Ersin Yumer, and Hao Li. 2018. Real-Time Hair Rendering Using Sequential Adversarial Networks. In Computer Vision – ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International Publishing, Cham, 105–122.
[21]
Kui Wu and Cem Yuksel. 2016. Real-Time Hair Mesh Simulation. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2016) (Redmond, WA). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/2856400.2856412
[22]
Kui Wu and Cem Yuksel. 2017a. Real-Time Cloth Rendering with Fiber-Level Detail. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 12 pages. https://doi.org/10.1109/TVCG.2017.2731949
[23]
Kui Wu and Cem Yuksel. 2017b. Real-Time Fiber-Level Cloth Rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017) (San Francisco, CA). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3023368.3023372
[24]
Kun Xu, Li-Qian Ma, Bo Ren, Rui Wang, and Shi-Min Hu. 2011. Interactive Hair Rendering and Appearance Editing under Environment Lighting. ACM Trans. Graph. 30, 6 (dec 2011), 1–10. https://doi.org/10.1145/2070781.2024207
[25]
Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015. Physically-Accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM Trans. Graph. 34, 6, Article 185 (nov 2015), 13 pages. https://doi.org/10.1145/2816795.2818080
[26]
Xuan Yu, Jason C. Yang, Justin Hensley, Takahiro Harada, and Jingyi Yu. 2012. A Framework for Rendering Complex Scattering Effects on Hair(I3D ’12). Association for Computing Machinery, New York, NY, USA, 111–118. https://doi.org/10.1145/2159616.2159635
[27]
Cem Yuksel. 2015. Sample Elimination for Generating Poisson Disk Sample Sets. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2015) 34, 2 (2015), 25–32. https://doi.org/10.1111/cgf.12538
[28]
Cem Yuksel and John Keyser. 2008. Deep Opacity Maps. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2008) 27, 2 (2008), 675–680. https://doi.org/10.1111/j.1467-8659.2008.01165.x
[29]
Cem Yuksel, Scott Schaefer, and John Keyser. 2009a. Hair Meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 5, Article 166 (2009), 7 pages. https://doi.org/10.1145/1661412.1618512
[30]
Cem Yuksel, Scott Schaefer, and John Keyser. 2009b. On the Parameterization of Catmull-Rom Curves. In 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (San Francisco, California). ACM, New York, NY, USA, 47–53.
[31]
Cem Yuksel and Sarah Tariq. 2010. Advanced Techniques in Real-Time Hair Rendering and Simulation. In ACM SIGGRAPH 2010 Courses (Los Angeles, California) (SIGGRAPH 2010). ACM, New York, NY, USA, Article 1, 168 pages. https://doi.org/10.1145/1837101.1837102
[32]
Junqiu Zhu, Sizhe Zhao, Lu Wang, Yanning Xu, and Ling-Qi Yan. 2022. Practical Level-of-Detail Aggregation of Fur Appearance. ACM Trans. Graph. 41, 4, Article 47 (jul 2022), 17 pages. https://doi.org/10.1145/3528223.3530105
[33]
Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual Scattering Approximation for Fast Multiple Scattering in Hair. ACM Trans. Graph. 27, 3 (aug 2008), 1–10. https://doi.org/10.1145/1360612.1360631

Index Terms

  1. Real-Time Hair Rendering with Hair Meshes

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGGRAPH '24: ACM SIGGRAPH 2024 Conference Papers
    July 2024
    1106 pages
    ISBN:9798400705250
    DOI:10.1145/3641519
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 July 2024

    Check for updates

    Author Tags

    1. Real-time rendering
    2. hair meshes.
    3. hair modeling
    4. hair rendering

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SIGGRAPH '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 573
      Total Downloads
    • Downloads (Last 12 months)573
    • Downloads (Last 6 weeks)195
    Reflects downloads up to 15 Oct 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media