Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An Induce-on-Boundary Magnetostatic Solver for Grid-Based Ferrofluids

Published: 19 July 2024 Publication History

Abstract

This paper introduces a novel Induce-on-Boundary (IoB) solver designed to address the magnetostatic governing equations of ferrofluids. The IoB solver is based on a single-layer potential and utilizes only the surface point cloud of the object, offering a lightweight, fast, and accurate solution for calculating magnetic fields. Compared to existing methods, it eliminates the need for complex linear system solvers and maintains minimal computational complexities. Moreover, it can be seamlessly integrated into conventional fluid simulators without compromising boundary conditions. Through extensive theoretical analysis and experiments, we validate both the convergence and scalability of the IoB solver, achieving state-of-the-art performance. Additionally, a straightforward coupling approach is proposed and executed to showcase the solver's effectiveness when integrated into a grid-based fluid simulation pipeline, allowing for realistic simulations of representative ferrofluid instabilities.

Supplementary Material

ZIP File (papers_138.zip)
supplemental

References

[1]
Ryoichi Ando and Christopher Batty. 2020. A Practical Octree Liquid Simulator with Adaptive Surface Resolution. ACM Trans. Graph. 39, 4, Article 32 (aug 2020), 17 pages.
[2]
Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational Framework for Accurate Solid-Fluid Coupling. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH '07). Association for Computing Machinery, New York, NY, USA, 100--es.
[3]
Christopher Batty and Robert Bridson. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland) (SCA '08). Eurographics Association, Goslar, DEU, 219--228.
[4]
Rick Beatson and Leslie Greengard. 1997. A short course on fast multipole methods. Oxford University Press, New York, NY, USA, 1--37.
[5]
Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid Surface Tracking with Error Compensation. ACM Trans. Graph. 32, 4, Article 68 (jul 2013), 13 pages.
[6]
Robert Bridson. 2015. Fluid simulation for computer graphics (2nd ed.). AK Peters/CRC Press, Boca Raton, FL, USA.
[7]
Cris Cecka and Simon Layton. 2015. FMMTL: FMM Template Library A Generalized Framework for Kernel Matrices. In Numerical Mathematics and Advanced Applications - ENUMATH 2013, Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, and Marco Picasso (Eds.). Springer International Publishing, Cham, 611--620.
[8]
Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon, David A. B. Hyde, and Joseph Teran. 2021. A Momentum-Conserving Implicit Material Point Method for Surface Tension with Contact Angles and Spatial Gradients. ACM Trans. Graph. 40, 4, Article 111 (jul 2021), 16 pages.
[9]
Xuwen Chen, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2022. Simulation and Optimization of Magnetoelastic Thin Shells. ACM Trans. Graph. 41, 4, Article 61 (jul 2022), 18 pages.
[10]
Yi-Lu Chen, Jonathan Meier, Barbara Solenthaler, and Vinicius C. Azevedo. 2020. An Extended Cut-Cell Method for Sub-Grid Liquids Tracking with Surface Tension. ACM Trans. Graph. 39, 6, Article 169 (nov 2020), 13 pages.
[11]
Nuttapong Chentanez and Matthias Müller. 2014. Mass-Conserving Eulerian Liquid Simulation. IEEE Transactions on Visualization and Computer Graphics 20, 1 (Jan 2014), 17--29.
[12]
Per H. Christensen. 2003. Adjoints and importance in rendering: an overview. IEEE Transactions on Visualization and Computer Graphics 9, 3 (2003), 329--340.
[13]
Per H. Christensen. 2008. Point-based approximate color bleeding. In Pixar Technical Notes. Pixar Animation Studios, online, 9 pages.
[14]
Michael F. Cohen, John Wallace, and Pat Hanrahan. 1993. Radiosity and Realistic Image Synthesis. Academic Press Professional, Inc., USA.
[15]
Erwin Coumans. 2015. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses. Association for Computing Machinery, New York, NY, USA.
[16]
Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based Surface Tracking. ACM Trans. Graph. 33, 4, Article 112 (July 2014), 11 pages.
[17]
Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4, Article 149 (July 2015), 9 pages.
[18]
Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4, Article 78 (jul 2016), 12 pages.
[19]
Denis Demidov. 2019. AMGCL: An Efficient, Flexible, and Extensible Algebraic Multigrid Implementation. Lobachevskii Journal of Mathematics 40, 5 (2019), 535--546.
[20]
Yitong Deng, Mengdi Wang, Xiangxin Kong, Shiying Xiong, Zangyueyang Xian, and Bo Zhu. 2022. A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation. ACM Trans. Graph. 41, 4, Article 154 (jul 2022), 17 pages.
[21]
Xinjian Fan, Xiaoguang Dong, Alp C. Karacakol, Hui Xie, and Metin Sitti. 2020. Reconfigurable multifunctional ferrofluid droplet robots. Proceedings of the National Academy of Sciences 117, 45 (2020), 27916--27926.
[22]
Xinjian Fan, Yihui Jiang, Mingtong Li, Yunfei Zhang, Chenyao Tian, Liyang Mao, Hui Xie, Lining Sun, Zhan Yang, and Metin Sitti. 2022. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces. Science Advances 8, 37 (2022), eabq1677.
[23]
Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow Band FLIP for Liquid Simulations. Computer Graphics Forum 35, 2 (2016), 225--232.
[24]
Nick Foster and Ronald Fedkiw. 2001. Practical Animation of Liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). Association for Computing Machinery, New York, NY, USA, 23--30.
[25]
Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains. J. Comput. Phys. 176, 1 (2002), 205--227.
[26]
Ryan Goldade, Christopher Batty, and Chris Wojtan. 2016. A Practical Method for High-Resolution Embedded Liquid Surfaces. Computer Graphics Forum 35, 2 (2016), 233--242.
[27]
David Hahn and Chris Wojtan. 2015. High-Resolution Brittle Fracture Simulation with Boundary Elements. ACM Trans. Graph. 34, 4, Article 151 (jul 2015), 12 pages.
[28]
David Hahn and Chris Wojtan. 2016. Fast Approximations for Boundary Element Based Brittle Fracture Simulation. ACM Trans. Graph. 35, 4, Article 104 (jul 2016), 11 pages.
[29]
Francis H. Harlow and J. Eddie Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics of Fluids 8, 12 (1965), 2182--2189.
[30]
Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-Scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (jul 2019), 15 pages.
[31]
Libo Huang and Dominik L. Michels. 2020. Surface-Only Ferrofluids. ACM Trans. Graph. 39, 6, Article 174 (nov 2020), 17 pages.
[32]
Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L. Michels, and Chenfanfu Jiang. 2021. Ships, Splashes, and Waves on a Vast Ocean. ACM Trans. Graph. 40, 6, Article 203 (dec 2021), 15 pages.
[33]
David A. B. Hyde, Steven W. Gagniere, Alan Marquez-Razon, and Joseph Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM Trans. Graph. 39, 6, Article 183 (nov 2020), 13 pages.
[34]
Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A Hyperbolic Geometric Flow for Evolving Films and Foams. ACM Trans. Graph. 36, 6, Article 199 (nov 2017), 11 pages.
[35]
Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2013. Visual Simulation of Magnetic Fluid Using a Procedural Approach for Spikes Shape. In Computer Vision, Imaging and Computer Graphics. Theory and Application. Springer Berlin Heidelberg, Berlin, Heidelberg, 112--126.
[36]
Doug L. James, Jernej Barbič, and Dinesh K. Pai. 2006. Precomputed Acoustic Transfer: Output-Sensitive, Accurate Sound Generation for Geometrically Complex Vibration Sources. ACM Trans. Graph. 25, 3 (jul 2006), 987--995.
[37]
Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable Objects. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., USA, 65--72.
[38]
Stefan Jeschke and Chris Wojtan. 2023. Generalizing Shallow Water Simulations with Dispersive Surface Waves. ACM Trans. Graph. 42, 4, Article 83 (jul 2023), 12 pages.
[39]
Guang-Shan Jiang and Danping Peng. 2000. Weighted ENO Schemes for Hamilton-Jacobi Equations. SIAM Journal on Scientific Computing 21, 6 (2000), 2126--2143.
[40]
James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (aug 1986), 143--150.
[41]
Byungkwon Kang, Yoojin Jang, and Insung Ihm. 2007. Animation of Chemically Reactive Fluids Using a Hybrid Simulation Method. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA '07). Eurographics Association, Goslar, DEU, 199--208.
[42]
Myungjoo Kang, Ronald P. Fedkiw, and Xu-Dong Liu. 2000. A Boundary Condition Capturing Method for Multiphase Incompressible Flow. Journal of Scientific Computing 15, 3 (2000), 323--360.
[43]
Todd Keeler and Robert Bridson. 2015. Ocean Waves Animation Using Boundary Integral Equations and Explicit Mesh Tracking. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Copenhagen, Denmark) (SCA '14). Eurographics Association, Goslar, DEU, 11--19.
[44]
Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., USA, 49--56.
[45]
Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of Bubbles in Foam with the Volume Control Method. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH '07). Association for Computing Machinery, New York, NY, USA, 98--es.
[46]
Seung-wook Kim and JungHyun Han. 2020. Simulation of Arbitrarily-shaped Magnetic Objects. Computer Graphics Forum 39, 7 (2020), 119--130.
[47]
Seung-wook Kim and JungHyun Han. 2022. Fast Stabilization of Inducible Magnet Simulation. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA '22). Association for Computing Machinery, New York, NY, USA, Article 52, 8 pages.
[48]
Seung-Wook Kim, Sun Young Park, and Junghyun Han. 2018. Magnetization Dynamics for Magnetic Object Interactions. ACM Trans. Graph. 37, 4, Article 121 (July 2018), 13 pages.
[49]
Sachiko Kodama. 2008. Dynamic Ferrofluid Sculpture: Organic Shape-Changing Art Forms. Commun. ACM 51, 6 (jun 2008), 79--81.
[50]
Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. A Survey on SPH Methods in Computer Graphics. Computer Graphics Forum 41, 2 (2022), 737--760.
[51]
Tassilo Kugelstadt, Andreas Longva, Nils Thuerey, and Jan Bender. 2021. Implicit Density Projection for Volume Conserving Liquids. IEEE Transactions on Visualization and Computer Graphics 27, 4 (2021), 2385--2395.
[52]
Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational Stokes: A Unified Pressure-Viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph. 36, 4, Article 101 (jul 2017), 11 pages.
[53]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4, Article 49 (aug 2020), 20 pages.
[54]
Xingqiao Li, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2023. GARM-LS: A Gradient-Augmented Reference-Map Method for Level-Set Fluid Simulation. ACM Trans. Graph. 42, 6, Article 192 (dec 2023), 20 pages.
[55]
Dennis A. Lindholm. 1980. Notes on boundary integral equations for three-dimensional magnetostatics. IEEE Transactions on Magnetics 16, 6 (1980), 1409--1413.
[56]
Xubo Liu, Noah Kent, Alejandro Ceballos, Robert Streubel, Yufeng Jiang, Yu Chai, Paul Y. Kim, Joe Forth, Frances Hellman, Shaowei Shi, Dong Wang, Brett A. Helms, Paul D. Ashby, Peter Fischer, and Thomas P. Russell. 2019. Reconfigurable ferromagnetic liquid droplets. Science 365, 6450 (2019), 264--267.
[57]
William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 163--169.
[58]
Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32, 4, Article 104 (jul 2013), 12 pages.
[59]
Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4, Article 82 (jul 2023), 11 pages.
[60]
Fumiya Narita and Ryoichi Ando. 2022. Tiled Characteristic Maps for Tracking Detailed Liquid Surfaces. Computer Graphics Forum 41, 8 (2022), 231--242.
[61]
Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2020. A Level-Set Method for Magnetic Substance Simulation. ACM Trans. Graph. 39, 4, Article 29 (aug 2020), 15 pages.
[62]
Stanley Osher and Ronald P. Fedkiw. 2005. Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, NY, USA.
[63]
Jonathan Panuelos, Ryan Goldade, Eitan Grinspun, David Levin, and Christopher Batty. 2023. PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid Simulation. ACM Trans. Graph. 42, 4, Article 124 (jul 2023), 13 pages.
[64]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering, fourth edition: From Theory to Implementation (4th ed.). The MIT Press, Cambridge, MA, USA.
[65]
Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional formulation for Walk on Spheres. Computer Graphics Forum 41, 4 (2022), 51--62.
[66]
Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A Material Point Method for Viscoelastic Fluids, Foams and Sponges. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '15). Association for Computing Machinery, New York, NY, USA, 157--163.
[67]
Bo Ren, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-Fluid SPH Simulation Using a Mixture Model. ACM Trans. Graph. 33, 5, Article 171 (sep 2014), 11 pages.
[68]
Ronald E. Rosensweig. 1997. Ferrohydrodynamics. Dover Publications, Inc., Mineola, NY, USA.
[69]
Karl K. Sabelfeld and Nikolai A. Simonov. 1994. Random Walks on Boundary for Solving PDEs. De Gruyter, Berlin, Boston.
[70]
Karl K. Sabelfeld and Nikolai A. Simonov. 2016. Stochastic Methods for Boundary Value Problems: Numerics for High-dimensional PDEs and Applications. De Gruyter, Berlin, Boston.
[71]
Stefan A. Sauter and Christoph Schwab. 2011. Boundary Element Methods. Springer Berlin Heidelberg, Berlin, Heidelberg, 183--287.
[72]
Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions. ACM Trans. Graph. 42, 4, Article 80 (jul 2023), 20 pages.
[73]
Han Shao, Libo Huang, and Dominik L. Michels. 2023. A Current Loop Model for the Fast Simulation of Ferrofluids. IEEE Transactions on Visualization and Computer Graphics 29, 12 (2023), 5394--5405.
[74]
Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH '12). Association for Computing Machinery, New York, NY, USA, Article 20, 50 pages.
[75]
Andrew Staniforth and Jean Côté. 1991. Semi-Lagrangian Integration Schemes for Atmospheric Models - A Review. Monthly Weather Review 119, 9 (1991), 2206--2223.
[76]
Ryusuke Sugimoto, Christopher Batty, and Toshiya Hachisuka. 2022. Surface-Only Dynamic Deformables using a Boundary Element Method. Computer Graphics Forum 41, 8 (2022), 75--86.
[77]
Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka. 2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM Trans. Graph. 42, 4, Article 81 (jul 2023), 16 pages.
[78]
Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2021. A Material Point Method for Nonlinearly Magnetized Materials. ACM Trans. Graph. 40, 6, Article 205 (dec 2021), 13 pages.
[79]
Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-Species Simulation of Porous Sand and Water Mixtures. ACM Trans. Graph. 36, 4, Article 105 (jul 2017), 11 pages.
[80]
Bernhard Thomaszewski, Andreas Gumann, Simon Pabst, and Wolfgang Straßer. 2008. Magnets in Motion. ACM Trans. Graph. 27, 5, Article 162 (Dec. 2008), 9 pages.
[81]
Mei Song Tong and Weng Cho Chew. 2020. The Nyström Method in Electromagnetics. John Wiley & Sons, Singapore.
[82]
Nobuyuki Umetani, Athina Panotopoulou, Ryan Schmidt, and Emily Whiting. 2016. Printone: Interactive Resonance Simulation for Free-Form Print-Wind Instrument Design. ACM Trans. Graph. 35, 6, Article 184 (dec 2016), 14 pages.
[83]
Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional Surface Tension Flow Using Moving-Least-Squares Particles. ACM Trans. Graph. 39, 4, Article 42 (aug 2020), 16 pages.
[84]
Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. 2021. Thin-Film Smoothed Particle Hydrodynamics Fluid. ACM Trans. Graph. 40, 4, Article 110 (jul 2021), 16 pages.
[85]
Chris Wojtan, Matthias Müller-Fischer, and Tyson Brochu. 2011. Liquid Simulation with Mesh-Based Surface Tracking. In ACM SIGGRAPH 2011 Courses (Vancouver, British Columbia, Canada) (SIGGRAPH '11). Association for Computing Machinery, New York, NY, USA, Article 8, 84 pages.
[86]
Joel Wretborn, Sean Flynn, and Alexey Stomakhin. 2022. Guided Bubbles and Wet Foam for Realistic Whitewater Simulation. ACM Trans. Graph. 41, 4, Article 117 (jul 2022), 16 pages.
[87]
Jingrui Xing, Liangwang Ruan, Bin Wang, Bo Zhu, and Baoquan Chen. 2022. Position-Based Surface Tension Flow. ACM Trans. Graph. 41, 6, Article 244 (nov 2022), 12 pages.
[88]
Ali K. Yetisen, Ahmet F. Coskun, Grant England, Sangyeon Cho, Haider Butt, Jonty Hurwitz, Mathias Kolle, Ali Khademhosseini, A. John Hart, Albert Folch, and Seok Hyun Yun. 2016. Art on the Nanoscale and Beyond. Advanced Materials 28, 9 (2016), 1724--1742.
[89]
Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32, 1, Article 5 (feb 2013), 12 pages.
[90]
Xiaoxuan Zhang, Lingyu Sun, Yunru Yu, and Yuanjin Zhao. 2019. Flexible Ferrofluids: Design and Applications. Advanced Materials 31, 51 (2019), 1903497.
[91]
Changxi Zheng and Doug L. James. 2009. Harmonic fluids. ACM Trans. Graph. 28, 3, Article 37 (jul 2009), 12 pages.
[92]
Changxi Zheng and Doug L. James. 2010. Rigid-Body Fracture Sound with Precomputed Soundbanks. ACM Trans. Graph. 29, 4, Article 69 (jul 2010), 13 pages.
[93]
Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015b. Codimensional Non-Newtonian Fluids. ACM Trans. Graph. 34, 4, Article 115 (July 2015), 9 pages.
[94]
Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional Surface Tension Flow on Simplicial Complexes. ACM Trans. Graph. 33, 4, Article 111 (July 2014), 11 pages.
[95]
Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph. 24, 3 (jul 2005), 965--972.
[96]
Yufeng Zhu, Robert Bridson, and Chen Greif. 2015a. Simulating Rigid Body Fracture with Surface Meshes. ACM Trans. Graph. 34, 4, Article 150 (jul 2015), 11 pages.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. ferrofluid simulation
  2. magnetostatics
  3. boundary integral equations
  4. single-layer potential
  5. free-surface flows

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 203
    Total Downloads
  • Downloads (Last 12 months)203
  • Downloads (Last 6 weeks)19
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media