Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Repulsive Shells

Published: 19 July 2024 Publication History

Abstract

This paper develops a shape space framework for collision-aware geometric modeling, where basic geometric operations automatically avoid inter-penetration. Shape spaces are a powerful tool for surface modeling, shape analysis, nonrigid motion planning, and animation, but past formulations permit nonphysical intersections. Our framework augments an existing shape space using a repulsive energy such that collision avoidance becomes a first-class property, encoded in the Riemannian metric itself. In turn, tasks like intersection-free shape interpolation or motion extrapolation amount to simply computing geodesic paths via standard numerical algorithms. To make optimization practical, we develop an adaptive collision penalty that prevents mesh self-intersection, and converges to a meaningful limit energy under refinement. The final algorithms apply to any category of shape, and do not require a dataset of examples, training, rigging, nor any other prior information. For instance, to interpolate between two shapes we need only a single pair of meshes with the same connectivity. We evaluate our method on a variety of challenging examples from modeling and animation.

Supplementary Material

ZIP File (papers_503.zip)
supplemental

References

[1]
Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2018. Metamolds: computational design of silicone molds. ACM Trans. Graph. 37, 4 (2018), 1--13.
[2]
Mishal Assif, Ravi Banavar, Anthony Bloch, Margarida Camarinha, and Leonardo Colombo. 2018. Variational collision avoidance problems on Riemannian manifolds. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2791--2796.
[3]
John M. Ball. 1981. Global invertibility of Sobolev functions and the interpenetration of matter. Proceedings of the Royal Society of Edinburgh 88A (1981), 315--328.
[4]
Jayanth R. Banavar, Oscar Gonzalez, John H. Maddocks, and Amos Maritan. 2003. Self-interactions of strands and sheets. Journal of Statistical Physics 110, 1--2 (2003), 35--50.
[5]
Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation using reduced optimal control. In ACM SIGGRAPH 2009 papers. 1--9.
[6]
Sören Bartels, Frank Meyer, and Christian Palus. 2022. Simulating Self-Avoiding Isometric Plate Bending. SIAM Journal on Scientific Computing 44, 3 (2022), A1475--A1496.
[7]
Rick Beatson and Leslie Greengard. 1997. A short course on fast multipole methods. Wavelets, multilevel methods and elliptic PDEs 1 (1997), 1--37.
[8]
M. Faisal Beg, Michael I. Miller, Alain Trouvé, and Laurent Younes. 2005. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. International Journal of Computer Vision 61, 2 (2005), 139--157.
[9]
Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. Tracks: toward directable thin shells. ACM Trans. Graph. 26, 3 (2007), 50--es.
[10]
Viktor Ivanovich Blagodatskikh and Aleksei Fedorovich Filippov. 1985. Differential inclusions and optimal control. Trudy Mat. Inst. Steklov 169 (1985), 194--252.
[11]
Simon Blatt. 2013. The Energy Spaces of the Tangent Point Energies. Journal of Topology and Analysis 5, 3 (2013), 261--270.
[12]
Vincent Borrelli, Roland Denis, Francis Lazarus, Mélanie Theillière, and Boris Thibert. 2023. The Hyperbolic Plane in E3. arXiv:2303.12449 [math.DG]
[13]
Vincent Borrelli, Saıd Jabrane, Francis Lazarus, and Boris Thibert. 2012. Flat tori in three-dimensional space and convex integration. Proceedings of the National Academy of Sciences 109, 19 (2012), 7218--7223.
[14]
Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh-a generic and efficient polygon mesh data structure. In 1st OpenSG Symposium, Vol. 18.
[15]
Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.
[16]
Gregory Buck and Jeremey Orloff. 1995. A simple energy function for knots. Topology and its Applications 61, 3 (1995).
[17]
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from metric. ACM Trans. Graph. 37, 4 (2018), 1--17.
[18]
Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert Sumner, and Markus Gross. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4 (2012), 1--9.
[19]
Keenan Crane and Max Wardetzky. 2017. A Glimpse Into Discrete Differential Geometry. Notices of the American Mathematical Society 64, 10 (2017), 1153--1159.
[20]
T. A. Davis. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.
[21]
Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2 (2021), 1--21.
[22]
Marvin Eisenberger and Daniel Cremers. 2020. Hamiltonian Dynamics for Real-World Shape Interpolation. In European Conference on Computer Vision. 179--196.
[23]
Preston R Fairchild, Vaibhav Srivastava, and Xiaobo Tan. 2021. Efficient path planning of soft robotic arms in the presence of obstacles. IFAC-PapersOnLine 54, 20 (2021), 586--591.
[24]
Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed Globally Injective 3D Deformation Processing. ACM Trans. Graph. 40, 4 (2021), 13 pages.
[25]
Razvan Constantin Fetecau. 2003. Variational methods for nonsmooth mechanics. California Institute of Technology.
[26]
P. Thomas Fletcher, Conglin Lu, Stephen M Pizer, and Sarang Joshi. 2004. Principal geodesic analysis for the study of nonlinear statistics of shape. In IEEE Transactions on Medical Imaging, Vol. 23. 995--1005.
[27]
Michael H Freedman, Zheng-Xu He, and Zhenghan Wang. 1994. Mobius energy of knots and unknots. Annals of mathematics 139, 1 (1994), 1--50.
[28]
Shinji Fukuhara. 1988. Energy of a knot. In A fête of topology. Elsevier, 443--451.
[29]
Russell Gayle, Ming C Lin, and Dinesh Manocha. 2005a. Constraint-based motion planning of deformable robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 1046--1053.
[30]
Russell Gayle, Paul Segars, Ming C Lin, and Dinesh Manocha. 2005b. Path planning for deformable robots in complex environments. In Robotics: science and systems. 225--232.
[31]
Oscar Gonzalez and John H. Maddocks. 1999. Global curvature, thickness, and the ideal shapes of knots. Proceedings of the National Academy of Sciences of the United States of America 96, 9 (1999), 4769--4773.
[32]
Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 62--67.
[33]
Oliver Gross, Yousuf Soliman, Marcel Padilla, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2023. Motion from Shape Change. ACM Trans. Graph. 42, 4 (2023), 1--11.
[34]
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen V3. (2010). http://eigen.tuxfamily.org
[35]
David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-aware geometric modeling. ACM Trans. Graph. 30, 6 (2011), 1--10.
[36]
Behrend Heeren. 2017. Numerical methods in shape spaces and optimal branching patterns. Ph. D. Dissertation. Universitäts-und Landesbibliothek Bonn.
[37]
Behrend Heeren, Martin Rumpf, Peter Schröder, Max Wardetzky, and Benedikt Wirth. 2014. Exploring the Geometry of the Space of Shells. Comput. Graph. Forum 33, 5 (2014), 247--256.
[38]
Behrend Heeren, Martin Rumpf, Peter Schröder, Max Wardetzky, and Benedikt Wirth. 2016. Splines in the Space of Shells. Comput. Graph. Forum 35, 5 (2016), 111--120.
[39]
Behrend Heeren, Martin Rumpf, Max Wardetzky, and Benedikt Wirth. 2012. Time-Discrete Geodesics in the Space of Shells. Comput. Graph. Forum 31, 5 (2012), 1755--1764.
[40]
Behrend Heeren and Josua Sassen. 2020. The Geometric Optimization and Simulation Toolbox (GOAST). https://gitlab.com/numod/goast
[41]
Behrend Heeren, Chao Zhang, Martin Rumpf, and William Smith. 2018. Principal Geodesic Analysis in the Space of Discrete Shells. Comput. Graph. Forum 37, 5 (2018), 173--184.
[42]
Roland Herzog and Estefanía Loayza-Romero. 2022. A manifold of planar triangular meshes with complete Riemannian metric. Math. Comp. 92 (2022), 1--50. Issue 339.
[43]
Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex augmentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017).
[44]
Hermann Karcher. 2014. Riemannian center of mass and so called karcher mean. arXiv:1407.2087
[45]
Danny M Kaufman, Timothy Edmunds, and Dinesh K Pai. 2005. Fast frictional dynamics for rigid bodies. In ACM SIGGRAPH 2005 Papers. 946--956.
[46]
Martin Kilian, Niloy J Mitra, and Helmut Pottmann. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3 (2007), 64.
[47]
Holger Klein, Noémie Jaquier, Andre Meixner, and Tamim Asfour. 2023. On the Design of Region-Avoiding Metrics for Collision-Safe Motion Generation on Riemannian Manifolds. arXiv:2307.15440
[48]
Nicolaas H Kuiper. 1955. On C1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545--556,683--689.
[49]
Robert B Kusner and John M Sullivan. 1994. Möbius Energies for Knots and Links, Surfaces and Submainfolds. Citeseer.
[50]
Robert B Kusner and John M Sullivan. 1998. Möbius-invariant knot energies. Ideal knots 19 (1998), 315--352.
[51]
Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang. 2021. Medial IPC: accelerated incremental potential contact with medial elastics. ACM Trans. Graph. 40, 4 (2021).
[52]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM Trans. Graph. 39, 4 (2020), 20 pages.
[53]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2023. Convergent Incremental Potential Contact. arXiv:2307.15908
[54]
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. 40, 4 (2021), 24 pages.
[55]
Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. Difficloth: Differentiable cloth simulation with dry frictional contact. ACM Trans. Graph. 42, 1 (2022), 1--20.
[56]
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2021. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 1 (2021), 99--106.
[57]
Michael Miller, Ayananshu Banerjee, Gary Christensen, Sarang Joshi, Navin Khaneja, Ulf Grenander, and Larissa Matejic. 1997. Statistical methods in computational anatomy. Statistical methods in medical research 6, 3 (1997), 267--299.
[58]
Jan Möbius and Leif Kobbelt. 2012. OpenFlipper: An Open Source Geometry Processing and Rendering Framework. In Curves and Surfaces. Lecture Notes in Computer Science, Vol. 6920. Springer, 488--500.
[59]
Jean J Moreau. 1988. Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth mechanics and Applications. Springer, 1--82.
[60]
Jean-Marie Morvan and Boris Thibert. 2002. On the approximation of a smooth surface with a triangulated mesh. Computational Geometry 23, 3 (2002), 337--352.
[61]
William Moss, Ming C Lin, and Dinesh Manocha. 2008. Constraint-based motion synthesis for deformable models. Computer Animation and Virtual Worlds 19, 3--4 (2008), 421--431.
[62]
Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air meshes for robust collision handling. ACM Trans. Graph. 34, 4 (2015), 1--9.
[63]
John Nash. 1954. C1 Isometric Imbeddings. The Annals of Mathematics 60, 3 (1954), 383.
[64]
Jorge Nocedal and Stephen J. Wright. 2006. Numerical optimization (second ed.). Springer, New York. xxii+664 pages.
[65]
Jun O'Hara. 1991. Energy of a knot. Topology 30, 2 (1991), 241--247.
[66]
Stanley Osher and Ronald P Fedkiw. 2005. Level set methods and dynamic implicit surfaces. Vol. 1. Springer New York.
[67]
Samuel Rodriguez, Jyh-Ming Lien, and Nancy M Amato. 2006. Planning motion in completely deformable environments. In Proceedings 2006 IEEE International Conference on Robotics and Automation. IEEE, 2466--2471.
[68]
Martin Rumpf and Benedikt Wirth. 2015. Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35, 3 (2015), 1011--1046.
[69]
Josua Sassen, Behrend Heeren, Klaus Hildebrandt, and Martin Rumpf. 2020a. Geometric optimization using nonlinear rotation-invariant coordinates. Computer Aided Geometric Design 77 (2020), 101829.
[70]
Josua Sassen, Klaus Hildebrandt, and Martin Rumpf. 2020b. Nonlinear Deformation Synthesis via Sparse Principal Geodesic Analysis. Comput. Graph. Forum 39, 5 (2020), 119--132.
[71]
Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph. 37, 1 (2017), 5:1--5:14.
[72]
Henrik Schumacher. 2023. Repulsor. https://github.com/HenrikSchumacher/Repulsor
[73]
Nicholas Sharp, Cristian Romero, Alec Jacobson, Etienne Vouga, Paul Kry, David IW Levin, and Justin Solomon. 2023. Data-Free Learning of Reduced-Order Kinematics. In ACM SIGGRAPH 2023 Conference Proceedings. 1--9.
[74]
Paweł Strzelecki and Heiko von der Mosel. 2013. Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in ℝn. Part I: Smoothing and self-avoidance effects. Journal of Geometric Analysis 23, 3 (2013), 1085--1139.
[75]
John M Sullivan. 1999. "The Optiverse" and other sphere eversions. arXiv:math/9905020
[76]
Robert W Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popović. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3 (2005), 488--495.
[77]
William Thurston, Silvio Levy, Delle Maxwell, Tamara Munzner, Nathaniel Thurston, Stuart Levy, David Ben-Zvi, Daeron Meyer, Adam Deaton, Dan Krech, Matt Headrick, Mark Phillips, Celeste Fowler, Charlie Gunn, Stephanie Mason, Linus Upson, Scott Wisdom, Karen McNenny, and Paul de Cordova. 1994. Outside In. The Geometry Center.
[78]
Wim M Van Rees, Etienne Vouga, and Lakshminarayanan Mahadevan. 2017. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences 114, 44 (2017), 11597--11602.
[79]
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2015. Real-Time Nonlinear Shape Interpolation. ACM Trans. Graph. 34, 3 (2015), 34:1--34:10.
[80]
Yuanzhen Wang, Beibei Liu, and Yiying Tong. 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Comput. Graph. Forum 31, 8 (2012), 2277--2287.
[81]
Benedikt Wirth, Leah Bar, Martin Rumpf, and Guillermo Sapiro. 2011. A Continuum Mechanical Approach to Geodesics in Shape Space. International Journal of Computer Vision 93, 3 (2011), 293--318.
[82]
Chris Wojtan, Peter J Mucha, and Greg Turk. 2006. Keyframe control of complex particle systems using the adjoint method. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 15--23.
[83]
Kenneth K. Yamamoto, Toby L. Shearman, Erik J. Struckmeyer, John A. Gemmer, and Shankar C. Venkataramani. 2021. Nature's forms are frilly, flexible, and functional. The European Physical Journal E 44, 7 (2021), 95.
[84]
Katherine Ye, Wode Ni, Max Krieger, Dor Ma'ayan, Jenna Wise, Jonathan Aldrich, Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation to beautiful diagrams. ACM Trans. Graph. 39, 4 (2020), 144--1.
[85]
Laurent Younes. 2010. Shapes and Diffeomorphisms. Springer.
[86]
Chris Yu, Caleb Brakensiek, Henrik Schumacher, and Keenan Crane. 2021a. Repulsive Surfaces. ACM Trans. Graph. 40, 6 (2021), 1--19.
[87]
Chris Yu, Henrik Schumacher, and Keenan Crane. 2021b. Repulsive Curves. ACM Trans. Graph. 40, 2 (2021). arXiv:2006.07859
[88]
Yufeng Zhu, Jovan Popović, Robert Bridson, and Danny M. Kaufman. 2017. Planar interpolation with extreme deformation, topology change and dynamics. ACM Trans. Graph. 36, 6, Article 213 (2017), 15 pages.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. shape spaces
  2. nonrigid deformation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 606
    Total Downloads
  • Downloads (Last 12 months)606
  • Downloads (Last 6 weeks)186
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media