Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Adaptation in cloud resource configuration: a survey

Published: 01 December 2016 Publication History

Abstract

With increased demand for computing resources at a lower cost by end-users, cloud infrastructure providers need to find ways to protect their revenue. To achieve this, infrastructure providers aim to increase revenue and lower operational costs. A promising approach to addressing these challenges is to modify the assignment of resources to workloads. This can be used, for example, to consolidate existing workloads; the new capability can be used to serve new requests or alternatively unused resources may be turned off to reduce power consumption. The goal of this paper is to highlight features, approaches and findings in the literature, in order to identify open challenges and facilitate future developments. We present a definition of cloud systems adaptation, a classification of the key features and a survey of adapting compute and storage configuration. Based on our analysis, we identify three open research challenges: characterising the workload type, accurate online profiling of workloads, and building highly scalable adaptation mechanisms.

References

[1]
Jassy AAmazon Web Services Summit. https://aws.amazon.com/summits/san-francisco/. Accessed May 2016.
[2]
Galante G, Bona LCEd (2012) A survey on cloud computing elasticity In: Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing, UCC '12, 263---270. IEEE Computer Society, Washington, DC, USA.
[3]
Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv Comput 82: 47---111.
[4]
Botran TL, Miguel-Alonso J, Lozano JA (2014) Auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4): 559---592.
[5]
Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of Elasticity Management Solutions in Cloud Computing In: Computer Communications and Networks, 235---263. Springer, 236 Gray's Inn Road, Floor 6, London WC1X 8HB, UK.
[6]
Jennings B, Stadler R (2015) Resource management in clouds: Survey and research challenges. J Netw Syst Manag 23(3): 567---619.
[7]
Coutinho EF, Carvalho Sousa FR, Rego PAL, Gomes DG, Souza JN (2014) Elasticity in cloud computing: a survey. Ann Telecommun - annales des tílícommunications 70(7): 289---309.
[8]
Mann ZA (2015) Allocation of virtual machines in cloud data centers—a survey of problem models and optimization algorithms. ACM Comput Surv 48(1): 11---11134.
[9]
Singh S, Chana I (2015) Qos-aware autonomic resource management in cloud computing: A systematic review. ACM Comput Surv 48(3): 42---14246.
[10]
Faniyi F, Bahsoon R (2015) A systematic review of service level management in the cloud. ACM Comput Surv 48(3): 43---14327.
[11]
Naskos A, Gounaris A, Sioutas S (2016) Cloud Elasticity: A Survey. In: Karydis I, Sioutas S, Triantafillou P, Tsoumakos D (eds)Algorithmic Aspects of Cloud Computing: First International Workshop, ALGOCLOUD 2015, Patras, Greece, September 14-15, 2015. Revised Selected Papers, 151---167. Springer, Cham.
[12]
Mohamaddiah MH, Abdullah A, Subramaniam S, Hussin M (2014) A survey on resource allocation and monitoring in cloud computing. Int J Mach Learn Comput 4(1): 31---38.
[13]
Singh S, Chana I (2016) A survey on resource scheduling in cloud computing: Issues and challenges. J Grid Comput 14(2): 1---48.
[14]
Murch R (2004) Autonomic Computing. IBM Press, 1 New Orchard Rd, Armonk, NY 10504, US.
[15]
NISTSp 800-145: Definition of cloud computing. Technical report, NIST, 100 Bureau Drive, Gaithersburg, USA (Sep 2011). NIST. http://csrc.nist.gov/publications/PubsSPs.html. Accessed May 2016.
[16]
Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not In: 10th International Conference on Autonomic Computing, 23---27.
[17]
Maurer M, Brandic I, Sakellariou R (2013) Adaptive resource configuration for cloud infrastructure management. Futur Gener Comput Syst 29(2): 472---487.
[18]
Magklis G, Semeraro G, Albonesi DH, Dropsho SG, Dwarkadas S, Scott ML (2003) Dynamic frequency and voltage scaling for a multiple-clock-domain microprocessor. IEEE Micro 23: 62---68.
[19]
Addis B, Ardagna D, Panicucci B, Zhang L (2010) Autonomic management of cloud service centers with availability guarantees In: 2010 IEEE 3rd International Conference on Cloud Computing, 220---227. IEEE, Washington, DC, USA.
[20]
Sedaghat M, Hernández-Rodriguez F, Elmroth E (2014) Autonomic resource allocation for cloud data centers: A peer to peer approach In: IEEE International Conference on Cloud and Autonomic Computing, 131---140. IEEE, Washington, DC, USA.
[21]
Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA (2012) Heterogeneity and dynamicity of clouds at scale: Google trace analysis In: Proceedings of the Third ACM Symposium on Cloud Computing, SoCC '12, 7---1713. ACM, New York, NY, USA.
[22]
Van HN, Tran FD, Menaud J-M (2009) Sla-aware virtual resource management for cloud infrastructures In: IEEE International Conference on Computer and Information Technology. IEEE, Washington, DC, USA 2:357-362.
[23]
Bodík P, Griffith R, Sutton C, Fox A, Jordan M, Patterson D (2009) Statistical machine learning makes automatic control practical for internet datacenters In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud'09. USENIX Association, Berkeley, CA, USA.
[24]
Lama P, Zhou X (2012) Aroma: Automated resource allocation and configuration of mapreduce environment in the cloud In: Proceedings of the 9th International Conference on Autonomic Computing, ICAC '12, 63---72. ACM, New York, NY, USA.
[25]
Malkowski SJ, Hedwig M, Li J, Pu C, Neumann D (2011) Automated control for elastic n-tier workloads based on empirical modeling In: Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC '11, 131---140. ACM, New York, NY, USA.
[26]
Ali-Eldin A, Tordsson J, Elmroth E (2012) An adaptive hybrid elasticity controller for cloud infrastructures In: 2012 IEEE Network Operations and Management Symposium, 204---212. IEEE, Washington, DC, USA.
[27]
Zhani MF, Cheriton DR, Zhang Q, Simon G, Boutaba R (2013) Vdc planner: Dynamic migration-aware virtual data center embedding for clouds In: IEEE International Symposium on Integrated Network Management, 18---25. IEEE, Washington, DC, USA.
[28]
Roy N, Dubey A, Gokhale A (2011) Efficient Autoscaling in the Cloud Using Predictive Models for Workload Forecasting In: IEEE International Conference on Cloud Computing, 500---507.
[29]
Urgaonkar B, Shenoy P, Chandra A, Goyal P, Wood T (2008) Agile dynamic provisioning of multi-tier internet applications. ACM Transactions on Autonomous and Adaptive Systems3(1).
[30]
Celaya J, Sakellariou R (2014) An adaptive policy to minimize energy and sla violations of parallel jobs on the cloud In: IEEE/ACM 7th International Conference on Utility and Cloud Computing, 507---508. IEEE, Washington, DC, USA.
[31]
Zheng S, Zhu G, Zhang J, Feng W (2015) Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm. Multimedia Tools and Applications: 1---18.
[32]
Zhang Q, Chen H, Shen Y, Ma S, Lu H (2016) Optimization of virtual resource management for cloud applications to cope with traffic burst. Futur Gener Comput Syst 58: 42---55.
[33]
Dawoud W, Takouna I, Meinel C (2011) Elastic virtual machine for fine-grained cloud resource provisioning. Glob Trends Comput Commun Syst 269: 11---25.
[34]
Citrix:Xen. http://www.xenserver.org. Accessed May 2016.
[35]
Padala P, Hou K-Y, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A (2009) Automated control of multiple virtualized resources In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys '09, 13---26. ACM, New York, NY, USA.
[36]
Almeida J, Almeida V, Ardagna D, Cunha Í, Francalanci C, Trubian M (2010) Joint admission control and resource allocation in virtualized servers. J Parallel Distrib Comput 70: 344---362.
[37]
Fargo F, Tunc C, Al-Nashif Y, Akoglu A, Hariri S (2014) Autonomic workload and resource management of cloud computing services In: IEEE International Conference on Cloud and Autonomic Computing, 101---110. IEEE, Washington, DC, USA.
[38]
Bu X, Rao J, Xu C-Z (2011) Model-free learning approach for coordinated configuration of virtual machines and appliances In: 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, 12---21. IEEE, Washington, DC, USA.
[39]
Beloglazov A, Abawajyb J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Futur Gener Comput Syst 28: 755---768.
[40]
Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: Elastic resource scaling for multi-tenant cloud systems In: Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC '11, 5---1514. ACM, New York, NY, USA.
[41]
Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G (2008) Power and performance management of virtualized computing environments via lookahead control In: Autonomic Computing ICAC, 3---23. IEEE, Washington, DC, USA.
[42]
Cardosa M, Korupolu MR, Singh A (2009) Shares and utilities based power consolidation in virtualized server environments In: 11th IFIP/IEEE International Conference on Symposium on Integrated Network Management, 327---334.
[43]
Wuhib F, Stadler R, Spreitzer M (2012) Dynamic resource allocation with management objectives: implementation for an openstack cloud. IEEE Trans Netw Serv Manag 9(2): 213---225.
[44]
Jung G, Hiltunen MA, Joshi KR, Schlichting RD, Pu C (2010) Mistral: Dynamically managing power, performance, and adaptation cost in cloud infrastructures In: International Conference on Distributed Computing Systems, 62---73. IEEE, Washington, DC, USA.
[45]
Han R, Guo L, Ghanem MM, Guo Y (2012) Lightweight resource scaling for cloud applications In: International Symposium on Cluster, Cloud and Grid Computing, 644---651. IEEE, Washington, DC, USA.
[46]
Amazon:AWS. http://aws.amazon.com/ec2/. Accessed May 2016.
[47]
Koehler M (2014) An adaptive framework for utility-based optimization of scientific applications in the cloud. J Cloud Comput Adv Syst App 3: 4.
[48]
Apache:Hadoop. http://hadoop.apache.org. Accessed May 2016.
[49]
Nathuji R, Kansal A, Ghaffarkhah A (2010) Q-clouds: Managing performance interference effects for qos-aware clouds In: Proceedings of the 5th European Conference on Computer Systems, EuroSys '10, 237---250. ACM, New York, NY, USA.
[50]
Zhu X, Wang Z, Singhal S (2006) Utility-Driven Workload Management Using Nested Control Design In: American Control Conference. IEEE, Washington, DC, USA.
[51]
Xu J, Zhao M, Fortes J, Carpenter R, Yousif M (2008) Autonomic resource management in virtualized data centers using fuzzy logic-based approaches. Clust Comput 11: 213---227.
[52]
Jamshidi P, Ahmad A, Pahl C (2014) Autonomic resource provisioning for cloud-based software In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, 95---104. ACM, New York, NY, USA.
[53]
Addis B, Ardagna D, Panicucci B, Squillante MS, Zhang L (2013) A hierarchical approach for the resource management of very large cloud platforms. IEEE Trans Dependable Secure Comput 10: 253---272.
[54]
Han R, Ghanem MM, Guo L, Guo Y, Osmond M (2014) Enabling cost-aware and adaptive elasticity of multi-tier cloud applications. Futur Gener Comput Syst 32: 82---98.
[55]
Hasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling In: Network Operations and Management Symposium, 1327---1334. IEEE, Washington, DC, USA.
[56]
Berral JL, Goiri In, Nou R, Julià F, Guitart J, Gavaldà R, Torres J (2010) Towards energy-aware scheduling in data centers using machine learning In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, e-Energy '10, 215---224. ACM, New York, NY, USA.
[57]
Gmach D, Rolia J, Cherkasova L, Kemper A (2009) Resource pool management: Reactive versus proactive or lets be friends. Computer Networks: The International Journal of Computer and Telecommunications Networking53: 2905---2922.
[58]
Box GEP, Jenkins GM, Reinsel GC (2008) Time Series Analysis: Forecasting and Control. 4th ed. John Wiley & Sons Inc, 111 River Street Hoboken, NJ 07030-5774.
[59]
Boor CD (2001) A Practical Guide to Splines. 1st ed. Springer, 233 Spring Street, New York, NY 10013-1578, USA.
[60]
Kalman RE (1960) A new approach to linear filtering and prediction problems. J Fluids Eng 82: 35---45.
[61]
Loan CV (1987) Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA.
[62]
Iqbal W, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Futur Gener Comput Syst 26: 871---879.
[63]
Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of virtual machine live migration in clouds: A performance evaluation In: Proceedings of the 1st International Conference on Cloud Computing, CloudCom '09, 254---265. Springer, Berlin, Heidelberg.
[64]
Sedaghat M, Hernández-Rodriguez F, Elmroth E, Girdzijauskas S (2014) Divide the task, multiply the outcome: Cooperative vm consolidation In: IEEE International Conference on Cloud Computing Technology and Science, 300---305. IEEE, Washington, DC, USA.
[65]
Gulati A, Shanmuganathan G, Holler A, Ahmad I (2011) Cloud-scale resource management: Challenges and techniques In: Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'11, 3---3. USENIX Association, Berkeley, CA, USA.
[66]
Tchana A, Palma ND, Safieddine I, Hagimont D, Diot B, Vuillerme N (2015) Euro-par 2015: Parallel processing: 21st international conference on parallel and distributed computing, Vienna, Austria, August 24-28, 2015, proceedings: 305---316.
[67]
Zhu X, Young D, Watson BJ, Wang Z, Rolia J, Singhal S, McKee B, Hyser C, Gmach D, Gardner R, Christian T, Cherkasova L (2008) 1000 Islands: Integrated Capacity and Workload Management for the Next Generation Data Center In: International Conference on Autonomic Computing, 172---181. IEEE, Washington, DC, USA.
[68]
Casalicchio E, Menascí DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, CAC '13, 11---110. ACM, New York, NY, USA.
[69]
Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr Comput Pract Experience 24: 1397---1420.
[70]
Choi HW, Kwak H, Sohn A, Chung K (2008) Autonomous learning for efficient resource utilization of dynamic vm migration In: Proceedings of the 22Nd Annual International Conference on Supercomputing, ICS '08, 185---194. ACM, New York, NY, USA.
[71]
Zuo L, Shu L, Dong S, Zhu C, Zhou Z (2016) Dynamically weigh0ted load evaluation method based on self-adaptive threshold in cloud computing. Mob Networks Appl :1---15.
[72]
Wang Q, Kanemasa Y, Li J, Lai CA, Matsubara M, Pu C (2013) Impact of dvfs on n-tier application performance In: Proceedings of the First ACM SIGOPS Conference on Timely Results in Operating Systems, TRIOS '13, 51---516. ACM, New York, NY, USA.
[73]
Tolia N, Wang Z, Marwah M, Bash C, Ranganathan P, Zhu X (2008) Delivering energy proportionality with non energy-proportional systems: Optimizing the ensemble In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower'08, 2---2. USENIX Association, Berkeley, CA, USA.
[74]
Lim HC, Babu S, Chase JS (2010) Automated control for elastic storage In: Proceedings of the 7th International Conference on Autonomic Computing, ICAC '10, 1---10. ACM, New York, NY, USA.
[75]
Di S, Kondo D, Cappello F (2013) Characterizing cloud applications on a google data center In: Parallel Processing (ICPP), 2013 42nd International Conference On, 468---473. IEEE, Washington, DC, USA.
[76]
Moreno IS, Garraghan P, Townend P, Xu J (2013) An approach for characterizing workloads in google cloud to derive realistic resource utilization models In: Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium On, 49---60. IEEE, Washington, DC, USA.
[77]
Zhang Q, Zhani MF, Boutaba R, Hellerstein JL (2014) Dynamic heterogeneity-aware resource provisioning in the cloud. IEEE Transactions on Cloud Computing 2(1): 14---28.
[78]
Yang J, Liu C, Shang Y, Cheng B, Mao Z, Liu C, Niu L, Chen J (2013) A cost-aware auto-scaling approach using the workload prediction in service clouds. Inf Syst Front 16(1): 7---18.
[79]
Liu C, Shang Y, Duan L, Chen S, Liu C, Chen J (2015) Optimizing Workload Category for Adaptive Workload Prediction in Service Clouds. In: Barros A, Grigori D, Narendra CN, Dam KH (eds)Service-Oriented Computing: 13th International Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings, 87---104. Springer, Berlin, Heidelberg.
[80]
Chard R, Chard K, Bubendorfer K, Lacinski L, Madduri R, Foster I (2015) Cost-aware elastic cloud provisioning for scientific workloads In: Cloud Computing (CLOUD), 2015 IEEE 8th International Conference On, 971---974. IEEE, Washington, DC, USA.
[81]
Gong Z, Gu X, Wilkes J (2010) Press: Predictive elastic resource scaling for cloud systems In: Network and Service Management (CNSM), 2010 International Conference On, 9---16. IEEE, Washington, DC, USA.
[82]
Zhang L, Zhang Y, Jamshidi P, Xu L, Pahl C (2015) Service workload patterns for qos-driven cloud resource management. J Cloud Comput 4(1): 1---21.
[83]
Xu F, Liu F, Jin H, Vasilakos AV (2014) Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions. Proc IEEE 102(1): 11---31.
[84]
Feller E, Ramakrishnan L, Morin C (2015) Performance and energy efficiency of big data applications in cloud environments: A hadoop case study. J Parallel Distrib Comput79---80: 80---89. Special Issue on Scalable Systems for Big Data Management and Analytics.
[85]
Delimitrou C, Kozyrakis C (2014) Quasar: Resource-efficient and qos-aware cluster management In: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '14, 127---144. ACM, New York, NY, USA.
[86]
Tsoumakos D, Konstantinou I, Boumpouka C, Sioutas S, Koziris N (2013) Automated, elastic resource provisioning for NoSQL clusters using TIRAMOLA In: Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium On, 34---41. IEEE, Washington, DC, USA.
[87]
Naskos A, Stachtiari E, Gounaris A, Katsaros P, Tsoumakos D, Konstantinou I, Sioutas S (2015) Dependable horizontal scaling based on probabilistic model checking In: Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium On, 31---40. IEEE, Washington, DC, USA.
[88]
Miller RData Center Knowledge. http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-%25web-servers/. Accessed May 2016.

Cited By

View all
  • (2023)Cloud Service Provider Cost for Online University: Amazon Web Services versus Oracle Cloud InfrastructureAdvances in Visual Informatics10.1007/978-981-99-7339-2_26(302-313)Online publication date: 15-Nov-2023
  • (2022)DeepScalingProceedings of the 13th Symposium on Cloud Computing10.1145/3542929.3563469(16-30)Online publication date: 7-Nov-2022
  • (2022)Scalable Virtual Machine Migration using Reinforcement LearningJournal of Grid Computing10.1007/s10723-022-09603-420:2Online publication date: 1-Jun-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Cloud Computing: Advances, Systems and Applications
Journal of Cloud Computing: Advances, Systems and Applications  Volume 5, Issue 1
December 2016
283 pages
ISSN:2192-113X
EISSN:2192-113X
Issue’s Table of Contents

Publisher

Hindawi Limited

London, United Kingdom

Publication History

Published: 01 December 2016

Author Tags

  1. Autonomic cloud
  2. Cloud adaptation
  3. Elasticity
  4. Resource management

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Cloud Service Provider Cost for Online University: Amazon Web Services versus Oracle Cloud InfrastructureAdvances in Visual Informatics10.1007/978-981-99-7339-2_26(302-313)Online publication date: 15-Nov-2023
  • (2022)DeepScalingProceedings of the 13th Symposium on Cloud Computing10.1145/3542929.3563469(16-30)Online publication date: 7-Nov-2022
  • (2022)Scalable Virtual Machine Migration using Reinforcement LearningJournal of Grid Computing10.1007/s10723-022-09603-420:2Online publication date: 1-Jun-2022
  • (2022)Dynamic Threshold Setting for VM MigrationService-Oriented and Cloud Computing10.1007/978-3-031-04718-3_2(31-46)Online publication date: 22-Mar-2022
  • (2021)The Impact of Cloud Computing on Organizational PerformanceInternational Journal of Cloud Applications and Computing10.4018/IJCAC.202110010811:4(136-151)Online publication date: 1-Oct-2021
  • (2021)ACEAWireless Communications & Mobile Computing10.1155/2021/66210942021Online publication date: 1-Jan-2021
  • (2021)Resource Scalability and Security Using Entropy Based Adaptive Krill Herd Optimization for Auto Scaling in CloudWireless Personal Communications: An International Journal10.1007/s11277-021-08238-0119:1(791-813)Online publication date: 1-Jul-2021
  • (2020)AutopilotProceedings of the Fifteenth European Conference on Computer Systems10.1145/3342195.3387524(1-16)Online publication date: 15-Apr-2020
  • (2020)Formalizing and simulating cross-layer elasticity strategies in Cloud systemsCluster Computing10.1007/s10586-020-03080-823:3(1603-1631)Online publication date: 1-Sep-2020
  • (2019)Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud ComputingACM Computing Surveys10.1145/334114552:5(1-39)Online publication date: 13-Sep-2019
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media