Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Decentralized semantic coordination of interconnected entities via belief propagation

Published: 18 September 2015 Publication History

Abstract

Agents in inherently distributed and open settings cannot be assumed to share an agreed ontology of their common task environment. To interact effectively, these agents need to establish semantic correspondences between their ontology elements. However, the correspondences computed by two agents may differ due to (a) differences in their ontologies, (b) different alignment methods used, and due to (c) different information one makes available to the other. Although semantic coordination methods have already been proposed for the computation of subjective correspondences between agents (i.e. correspondences from the viewpoint of a specific agent), this paper proposes a decentralized method for communities, groups and arbitrarily formed networks of interconnected agents to reach semantic agreements on subjective ontology elements’ correspondences, via belief propagation: Agents detect disagreements on correspondences via feedback they receive from others, and they revise their decisions with respect to their preferences on correspondences and the semantics of ontological specifications. This work addresses this problem by means of a distributed extension of the max-plus algorithm. Experimental results from a large number of networks of varying complexity show the strengths of the proposed approach.

References

[1]
[1]P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset and L. Simon, Distributed reasoning in peer-to-peer setting: Applications to the Semantic Web, Journal of Artificial Intelligence Research 25 (2006), 269–314.
[2]
[2]A. Baronchelli, M. Felici, E. Caglioti, V. Loreto and L. Steels, Sharp transition towards shared vocabularies in multi-agent systems, J. Stat. Mech. 2006 (2006), P06014.
[3]
[3]A. Bikakis and G. Antoniou, Defeasible contextual reasoning with arguments in ambient intelligence, IEEE TKDE 22(11) (2010), 1492–1506.
[4]
[4]G. Brewka and T. Eiter, Equilibria in heterogeneous nonmonotonic multi-context systems, in: Proc. of AAAI’07, 2007, pp. 385–390.
[5]
[5]P. Cudré-Mauroux, K. Aberer and A. Feher, Probabilistic message passing in peer data management systems, in: Proc. of ICDE 2006, 2006, pp. 41–52.
[6]
[6]M. Dao-Tran, T. Eiter, M. Fink and T. Krennwallner, Distributed nonmonotonic multi-context systems, in: Proc. of KR’10, 2010.
[7]
[7]A. Farinelli, A. Rogers, A. Petcu and N.R. Jennings, Decentralised coordination of low-power embedded devices using the max-plus algorithm, in: Proc. of AAMAS 2008, 2008, pp. 639–646.
[8]
[8]S. Fitzpatrick and L. Meertens, An experimental assessment of a stochastic, anytime, decentralized, soft colourer for sparse graphs, in: Proc. of the 1st Symp. on Stochastic Algorithms: Foundations and Applications, 2001, pp. 49–64.
[9]
[9]C. Guestrin, D. Koller and R. Parr, Multiagent planning with factored MDPs, in: NIPS, Vol. 14, MIT Press, 2001, pp. 1523–1530.
[10]
[10]A.Y. Halevy, Z.G. Ives, D. Suciu and I. Tatarinov, Schema mediation in peer data management, in: Proc. of the 19th Int. Conf. on Data Engineering, 2003, pp. 505–516.
[11]
[11]E. Jimenez-Ruiz, B.C. Grau, I. Horrocks and R. Berlanga, Ontology integration using mappings: Towards getting the right logical consequences, in: Proc. of ESWC 2009, 2009, pp. 173–187.
[12]
[12]J.R. Kok and N. Vlassis, Collaborative reinforcement learning by payoff propagation, JMLR 7 (2006), 1789–1828.
[13]
[13]F.R. Kschischang, B.J. Frey and H.-A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory 47(2) (2001), 498–519.
[14]
[14]L. Laera, I. Blacoe, V.A.M. Tamma, T.R. Payne, J. Euzenat and T.J.M. Bench-Capon, Argumentation over ontology correspondences in MAS, in: Proc. of AAMAS 2007, 2007, pp. 1285–1292.
[15]
[15]C. Meilicke and H. Stuckenschmidt, An efficient method for computing alignment diagnoses, in: Proc. of the 3rd Int. Conf. on Web Reasoning and Rule Systems, RR 2009, 2009, pp. 182–196.
[16]
[16]C. Meilicke, H. Stuckenschmidt and A. Tamilin, Reasoning support for mapping revision, Journal of Logic and Computation 19(5) (2009), 807–829.
[17]
[17]S. Minton, M.D. Johnston, A.B. Philips and P. Laird, Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems, Artificial Intelligence 58(1–3) (1992), 161–205.
[18]
[18]G. Qi, Q. Ji and P. Haase, A conflict-based operator for mapping revision, in: Proc. of DL-2009, CEUR Workshop Proceedings, Vol. 477, 2009.
[19]
[19]D. Reitter and C. Lebiere, How groups develop a specialized domain vocabulary: A cognitive multi-agent model, Cognitive Syst. Res. 12 (2011), 175–185.
[20]
[20]M. Sensoy, T.J. Norman, W.W. Vasconcelos and K.P. Sycara, OWL-POLAR: A framework for semantic policy representation and reasoning, J. Web Sem. 12 (2012), 148–160.
[21]
[21]M. Sensoy and P. Yolum, Evolving service semantics cooperatively: A consumer-driven approach, J. Aut. Agents and Multi-Agent Syst. 18(3) (2009), 526–555.
[22]
[22]V. Spiliopoulos and G. Vouros, Synthesizing ontology alignment methods using the max-sum algorithm, IEEE TKDE 24(5) (2012), 940–951.
[23]
[23]C. Trojahn and J. Euzenat, Consistency-driven argumentation for alignment agreement, in: Proc. of OM 2010, CEUR Workshop Proceedings, Vol. 689, 2010.
[24]
[24]C. Trojahn, M. Moraes, P. Quaresma and R. Vieira, A cooperative approach for composite ontology mapping, in: J. Data Semantics, LNCS, Vol. 4900, 2008, pp. 237–263.
[25]
[25]J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk and J.-J.C. Meyer, ANEMONE: An effective minimal ontology negotiation environment, in: Proc. of AAMAS 2006, 2006, pp. 899–906.
[26]
[26]J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk and J.-J.C. Meyer, Optimal communication vocabularies and heterogeneous ontologies, in: Agent Communication, R.M. van Eijk et al., eds, LNCS, Vol. 3396, 2004, pp. 76–90.
[27]
[27]G. Vouros, Searching and sharing information in networks of heterogeneous agents, in: Proc. of AAMAS 2008, 2008, pp. 1525–1528 (short paper).
[28]
[28]G. Vouros, Information sharing and searching via collaborative reinforcement learning, in: Proc. of SETN 2012, LNCS, Vol. 7297, 2012, pp. 132–140.
[29]
[29]M.J. Wainwright, T.S. Jaakola and A.S. Willsky, Tree consistency and bounds on the performance of the max-product algorithm and its generalizations, Statistics and Computing 14 (2004), 143–166.
[30]
[30]B.A. Williams, Learning to share meaning in a multi-agent systems, J. Aut. Agents and Multi-Agent Syst. 8(2) (2004), 165–193.
[31]
[31]W. Zhang, G. Wang, Z. Xing and L. Wittenburg, Distributed stochastic search and distributed breakout: Properties, comparison and applications to constraint optimization problems in sensor networks, Artificial Intelligence 161(1,2) (2005), 55–87.

Index Terms

  1. Decentralized semantic coordination of interconnected entities via belief propagation
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image AI Communications
            AI Communications  Volume 28, Issue 4
            Sep 2015
            169 pages

            Publisher

            IOS Press

            Netherlands

            Publication History

            Published: 18 September 2015

            Author Tags

            1. Ontology alignment
            2. belief propagation
            3. semantic agreements
            4. agreement technologies

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 14 Oct 2024

            Other Metrics

            Citations

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media