Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On-line human activity recognition from audio and home automation sensors: : Comparison of sequential and non-sequential models in realistic Smart Homes

Published: 01 January 2016 Publication History

Abstract

Automatic human Activity Recognition (AR) is an important process for the provision of context-aware services in smart spaces such as voice-controlled smart homes. This paper presents an on-line Activities of Daily Living (ADL) recognition method for automatic identification within homes in which multiple sensors, actuators and automation equipment coexist, including audio sensors. Three sequence-based models are presented and compared: a Hidden Markov Model (HMM), Conditional Random Fields (CRF) and a sequential Markov Logic Network (MLN). These methods have been tested in two real Smart Homes thanks to experiments involving more than 30 participants. Their results were compared to those of three non-sequential models: a Support Vector Machine (SVM), a Random Forest (RF) and a non-sequential MLN. This comparative study shows that CRF gave the best results for on-line activity recognition from non-visual, audio and home automation sensors.

References

[1]
J. Aggarwal and M. Ryoo, Human activity analysis: A review, ACM Computing Surveys 43(3) (2011), 16:1–16:43. https://doi.org/10.1145/1922649.1922653.
[2]
A. Artikis, G. Paliouras, F. Portet and A. Skarlatidis, Logic-based representation, reasoning and machine learning for event recognition, in: The 4th ACM International Conference on Distributed Event-Based Systems (DEBS), 2010, pp. 282–293.
[3]
A. Artikis, A. Skarlatidis and G. Paliouras, Behaviour recognition from video content: A logic programming approach, International Journal on Artificial Intelligence Tools 19(2) (2010), 193–209. https://doi.org/10.1142/S021821301000011X.
[4]
A. Artikis, A. Skarlatidis, F. Portet and G. Paliouras, Logic-based event recognition, Knowledge Engineering Review 27(4) (2012), 469–506. https://doi.org/10.1017/S0269888912000264.
[5]
J.C. Augusto and C.D. Nugent, The use of temporal reasoning and management of complex events in smart homes, in: European Conference on Artificial Intelligence, 2004, pp. 778–782.
[6]
L. Bao and S. Intille, Activity recognition from user-annotated acceleration data, in: Pervasive Computing, Lecture Notes in Computer Science, Vol. 3001, Springer, 2004, pp. 1–17. https://doi.org/10.1007/978-3-540-24646-6_1.
[7]
D. Blachon, F. Portet, L. Besacier and S. Tassart, RecordMe: A smartphone application for experimental collections of large amount of data respecting volunteer’s privacy, in: UCAmI 2014, Belfast, United Kingdom, 2014, pp. 345–348.
[8]
B.E. Boser, I.M. Guyon and V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Fifth Annual Workshop on Computational Learning Theory, ACM, Pittsburgh, 1992, pp. 144–152. https://doi.org/10.1145/130385.130401.
[9]
S. Bouakaz, M. Vacher, M.-E. Bobillier-Chaumon, F. Aman, S. Bekkadja, F. Portet, E. Guillou, S. Rossato, E. Desserée, P. Traineau, J.-P. Vimon and T. Chevalier, CIRDO: Smart companion for helping elderly to live at home for longer, Innovation and Research in BioMedical Engineering (IRBM) 35(2) (2014), 101–108.
[10]
L. Breiman, Random forests, Machine Learning 45(1) (2001), 5–32. https://doi.org/10.1023/A:1010933404324.
[11]
P. Chahuara, A. Fleury, M. Vacher and F. Portet, Méthodes SVM et MLN pour la reconnaissance automatique d’activités humaines dans les habitats perceptifs: Tests et perspectives, in: Actes de la Conférence RFIA 2012, Lyon, France, 2012, pp. 340–347.
[12]
P. Chahuara, F. Portet and M. Vacher, Location of an inhabitant for domotic assistance through fusion of audio and non-visual data, in: Pervasive Health, Dublin, Ireland, European Alliance for Innovation, 2011, pp. 1–4, http://www.pervasivehealth.org/.
[13]
P. Chahuara, F. Portet and M. Vacher, Making context aware decision from uncertain information in a Smart Home: A Markov Logic Network approach, in: Ambient Intelligence, Dublin, Ireland, Lecture Notes in Computer Science, Vol. 8309, Springer, 2013, pp. 78–93. https://doi.org/10.1007/978-3-319-03647-2_6.
[14]
L. Chen, J. Hoey, C. Nugent, D. Cook and Z. Yu, Sensor-based activity recognition, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(6) (2012), 790–808. https://doi.org/10.1109/TSMCC.2012.2198883.
[15]
L. Chen, C. Nugent, M. Mulvenna, D. Finlay, X. Hong and M. Poland, A logical framework for behaviour reasoning and assistance in a smart home, International Journal of Assistive Robotics and Mechatronics 9(4) (2008).
[16]
L. Chen, C. Nugent and H. Wang, A knowledge-driven approach to activity recognition in smart homes, IEEE Transactions on Knowledge and Data Engineering 24(6) (2012), 961–974. https://doi.org/10.1109/TKDE.2011.51.
[17]
H. Chieu, W. Lee and L. Kaelbling, Activity recognition from physiological data using conditional random fields, in: Proc. of the Singapore-MIT Alliance Symposium (SMA), 2006.
[18]
B. Clarkson, Life patterns: Structure from wearable sensors, PhD thesis, Massachusetts Institute of Technology, USA, 2003.
[19]
D.J. Cook, M. Youngblood, E.O. Heierman III, K. Gopalratnam, S. Rao, A. Litvin and F. Khawaja, Mavhome: An agent-based smart home, in: IEEE International Conference on Pervasive Computing and Communications, 2003, p. 521.
[20]
J. Coutaz, J.L. Crowley, S. Dobson and D. Garlan, Context is key, Communications of the ACM 48(3) (2005), 49–53. https://doi.org/10.1145/1047671.1047703.
[21]
S. Dalal, M. Alwan, R. Seifrafi, S. Kell and D. Brown, A rule-based approach to the analysis of elders activity data: Detection of health and possible emergency conditions, in: AAAI Fall 2005 Symposium, 2005.
[22]
B. de Carolis and G. Cozzolongo, C@sa: Intelligent home control and simulation, in: International Conference on Computational Intelligence (ICCI), Istanbul, Turkey, 2004, pp. 462–465.
[23]
T. Duong, D. Phung, H. Bui and S. Venkatesh, Efficient duration and hierarchical modeling for human activity recognition, Artificial Intelligence 173(7–8) (2009), 830–856. https://doi.org/10.1016/j.artint.2008.12.005.
[24]
J.A. Flanagan, J. Mantyjarvi and J. Himberg, Unsupervised clustering of symbol strings and context recognition, in: Proc. of the 2002 IEEE International Conference on Data Mining, ICDM ’02, IEEE Computer Society, Washington, DC, USA, 2002, pp. 171–178.
[25]
A. Fleury, N. Noury and M. Vacher, Improving supervised classification of activities of daily living using prior knowledge, International Journal of E-Health and Medical Communications (IJEHMC) 2(1) (2011), 17–34. https://doi.org/10.4018/jehmc.2011010102.
[26]
A. Fleury, M. Vacher and N. Noury, SVM-based multi-modal classification of activities of daily living in health smart homes: Sensors, algorithms and first experimental results, IEEE Transactions on Information Technology in Biomedicine 14(2) (2010), 274–283. https://doi.org/10.1109/TITB.2009.2037317.
[27]
A. Fleury, M. Vacher, F. Portet, P. Chahuara and N. Noury, A French corpus of audio and multimodal interactions in a health smart home, Journal on Multimodal User Interfaces 7(1) (2012), 93–109.
[28]
M. Gallissot, J. Caelen, F. Jambon and B. Meillon, Une plate-forme usage pour l’intégration de l’informatique ambiante dans l’habitat, Domus. Technique et Science Informatiques (TSI) 32(5) (2013), 547–574.
[29]
L. Getoor and B. Taskar (eds), Introduction to Statistical Relational Learning, The MIT Press, 2007.
[30]
K.Z. Haigh and H. Yanco, Automation as caregiver: A survey of issues and technologies, in: Proc. of the AAAI-02 Workshop Automation as Caregiver: The Role of Intelligent Technology in Elder Care, 2002, pp. 39–53.
[31]
M. Hamid, A computational framework for unsupervised analysis of everyday human activities, PhD thesis, Georgia Institute of Technology, USA, 2008.
[32]
R. Helaoui, M. Niepert and H. Stuckenschmidt, A statistical-relational activity recognition framework for ambient assisted living systems, in: Ambient Intelligence and Future Trends-International Symposium on Ambient Intelligence (ISAmI 2010), Guimarães, Portugal, 2010, pp. 247–254. https://doi.org/10.1007/978-3-642-13268-1_34.
[33]
R. Helaoui, M. Niepert and H. Stuckenschmidt, Recognizing interleaved and concurrent activities: A statistical-relational approach, in: International Conference on Pervasive Computing and Communications (PerCom), 2011, pp. 1–9.
[34]
Z.Z. Htike, S. Egerton and Y.C. Kuang, Real-time human activity recognition using external and internal spatial features, in: Sixth International Conference on Intelligent Environments, Kuala Lumpur, Malaysia, IEEE Computer Society, 2010, pp. 52–57.
[35]
S.S. Intille, Designing a home of the future, IEEE Pervasive Computing 1(2) (2002), 76–82. https://doi.org/10.1109/MPRV.2002.1012340.
[36]
D. Istrate, E. Castelli, M. Vacher, L. Besacier and J.-F. Serignat, Information extraction from sound for medical telemonitoring, IEEE Transactions on Information Technology in Biomedicine 10(2) (2006), 264–274. https://doi.org/10.1109/TITB.2005.859889.
[37]
S. Katz, Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living, Journal of the American Geriatrics Society 31(12) (1983), 721–727. https://doi.org/10.1111/j.1532-5415.1983.tb03391.x.
[38]
K. Kersting, L.D. Raedt and T. Raiko, Logical hidden Markov models, Journal of Artificial Intelligence Research 25 (2006), 425–456.
[39]
A. Khan, Y.-K. Lee, S. Lee and T.-S. Kim, A tri-axial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer, IEEE Transactions on Information Technology in Biomedicine 14(5) (2010), 1166–1172. https://doi.org/10.1109/TITB.2010.2051955.
[40]
N.C. Krishnan and D.J. Cook, Activity recognition on streaming sensor data, Pervasive and Mobile Computing 10 (2014), 138–154. https://doi.org/10.1016/j.pmcj.2012.07.003.
[41]
L.A. Kurgan and K.J. Cios, CAIM discretization algorithm, IEEE Transactions on Knowledge and Data Engineering 16(2) (2004), 145–153. https://doi.org/10.1109/TKDE.2004.1269594.
[42]
J.D. Lafferty, A. McCallum and F.C.N. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in: International Conference on Machine Learning, ICML’01, 2001, pp. 282–289.
[43]
M. Lawton and E. Brody, Assessment of older people: Self-maintaining and instrumental activities of daily living, Gerontologist 9 (1969), 179–186.
[44]
G. Le Bellego, N. Noury, G. Virone, M. Mousseau and J. Demongeot, A model for the measurement of patient activity in a hospital suite, IEEE Transactions on Information Technologies in Biomedicine 10(1) (2006), 92–99. https://doi.org/10.1109/TITB.2005.856855.
[45]
M.-W. Lee, A.M. Khan and T.-S. Kim, A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation, Personal Ubiquitous Computing 15(8) (2011), 887–898. https://doi.org/10.1007/s00779-011-0403-3.
[46]
L. Liao, Location-based activity recognition, PhD thesis, University of Washington, USA, 2006.
[47]
W. Lin, M.-T. Sun, R. Poovendran and Z. Zhang, Activity recognition using a combination of category components and local models for video surveillance, IEEE Transactions on Circuits and Systems for Video Technology 18(8) (2008), 1128–1139. https://doi.org/10.1109/TCSVT.2008.927111.
[48]
D. Lowd and P. Domingos, Efficient weight learning for Markov logic networks, in: Proc. of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases, 2007, pp. 200–211.
[49]
D. Minnen, Unsupervised discovery of activity primitives from multivariate sensor data, PhD thesis, Georgia Institute of Technology, USA, 2008.
[50]
L.C. Molina, L. Belanche and À. Nebot, Feature selection algorithms: A survey and experimental evaluation, in: Proc. of the IEEE International Conference on Data Mining (ICDM 2002), 2002, pp. 306–313.
[51]
M.C. Mozer, Lessons from an adaptive home, in: Smart Environments: Technologies, Protocols, and Applications, D. Cook and R. Das, eds, John Wiley & Sons, Inc., 2005, pp. 271–294. https://doi.org/10.1002/047168659X.ch12.
[52]
U. Naeem and J. Bigham, Activity recognition using a hierarchical framework, in: Second Int. Conf. on Pervasive Computing Technologies for Healthcare, 2008, pp. 24–27.
[53]
S. Natarajan, H.H. Bui, P. Tadepalli, K. Kersting and W. Wong, Logical hierarchical hidden Markov models for modeling user activities, in: Proc. of the 18th International Conference on Inductive Logic Programming, Prague, Czech Republic, Springer-Verlag, 2008, pp. 192–209. https://doi.org/10.1007/978-3-540-85928-4_17.
[54]
E. Nazerfard, B. Das, L.B. Holder and D.J. Cook, Conditional random fields for activity recognition in smart environments, in: Proc. of the 1st ACM International Health Informatics Symposium, IHI ’10, ACM, New York, NY, USA, 2010, pp. 282–286.
[55]
Q.N. Ni, A. García Hernando and I.P. de la Cruz, The elderly’s independent living in smart homes: A characterization of activities and sensing infrastructure survey to facilitate services development, Sensors 15 (2015), 11312–11362. https://doi.org/10.3390/s150511312.
[56]
G. Okeyo, L. Chen, H. Wang and R. Sterritt, Dynamic sensor data segmentation for real-time knowledge-driven activity recognition, Pervasive and Mobile Computing (2012), (in press).
[57]
D.J. Patterson, O. Etzioni, D. Fox and H. Kautz, Intelligent ubiquitous computing to support Alzheimer’s patients: Enabling the cognitively disabled, in: Fourth International Conference on Ubiquitous Computing, Göteborg, Sweden, 2002, pp. 21–22.
[58]
W. Pentney, A.-M. Popescu, S. Wang, H. Kautz and M. Philipose, Sensor-based understanding of daily life via large-scale use of common sense, in: Proc. of the 21st National Conference on Artificial Intelligence – Volume 1, AAAI’06, AAAI Press, 2006, pp. 906–912.
[59]
F. Portet, M. Vacher, C. Golanski, C. Roux and B. Meillon, Design and evaluation of a smart home voice interface for the elderly: Acceptability and objection aspects, Personal and Ubiquitous Computing 17 (2013), 127–144. https://doi.org/10.1007/s00779-011-0470-5.
[60]
J.R. Quinlan, Bagging, boosting, and C4.5, in: Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96), AAAI/MIT Press, 1996, pp. 725–730.
[61]
L. Rabiner, A tutorial on Hidden Markov Models and selected applications in speech recognition, Proceedings of the IEEE 77(2) (1989), 257–286. https://doi.org/10.1109/5.18626.
[62]
O. Rasanen, Hierarchical unsupervised discovery of user context from multivariate sensory data, in: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2105–2108. https://doi.org/10.1109/ICASSP.2012.6288326.
[63]
P. Rashidi and A. Mihailidis, A survey on ambient-assisted living tools for older adults, IEEE Journal of Biomedical and Health Informatics 17(3) (2013), 579–590. https://doi.org/10.1109/JBHI.2012.2234129.
[64]
D.A. Reynolds, T.F. Quatieri and R.B. Dunn, Speaker verification using adapted Gaussian mixture models, Digital Signal Processing 10(1–3) (2000), 19–41. https://doi.org/10.1006/dspr.1999.0361.
[65]
V. Rialle, Rapport sur les technologies nouvelles susceptibles d’améliorer les pratiques gérontologiques et la vie quotidienne des malades âgés et de leur famille, Technical report, Rapport remis à M. Philippe Bas, Ministre de la Santé et des Solidarités, République Française, p. 74.
[66]
M. Richardson and P. Domingos, Markov logic networks, Machine Learning 62(1–2) (2006), 107–136. https://doi.org/10.1007/s10994-006-5833-1.
[67]
N. Rota and M. Thonnat, Activity recognition from video sequences using declarative models, in: European Conference on Ambient Intelligence (ECAI), W. Horn, ed., IOS Press, 2000, pp. 673–680.
[68]
Y. Saeys, I. Inza and P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23 (2007), 2507–2517. https://doi.org/10.1093/bioinformatics/btm344.
[69]
M. Segal, Machine learning benchmarks and random forest regression, Technical report, Center for Bioinformatics and Molecular Biostatistics, University of California, San Francisco, CA, USA, 2004.
[70]
H. Storf, M. Becker and M. Riedl, Rule-based activity recognition framework: Challenges, technique and learning, in: 3rd International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2009, London, UK, 2009, pp. 1–7.
[71]
P. Tang and T. Venables, Smart homes and telecare for independent living, Journal of Telemedicine and Telecare 6(1) (2000), 8–14. https://doi.org/10.1258/1357633001933871.
[72]
E.M. Tapia, S.S. Intille and K. Larson, Activity recognition in the home using simple and ubiquitous sensors, Pervasive Computing 2 (2004), 158–175. https://doi.org/10.1007/978-3-540-24646-6_10.
[73]
B. Taskar, P. Abbeel and D. Koller, Discriminative probabilistic models for relational data, in: Proc. of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI’02, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002, pp. 485–492.
[74]
Y. Tong and R. Chen, Latent-dynamic conditional random fields for recognizing activities in Smart Homes, Journal of Ambient Intelligence and Smart Environments 6 (2014), 39–55.
[75]
T. Truyen, H. Bui, D. Phung and S. Venkatesh, Learning discriminative sequence models from partially labelled data for activity recognition, in: PRICAI 2008: Trends in Artificial Intelligence, T.-B. Ho and Z.-H. Zhou, eds, Lecture Notes in Computer Science, Vol. 5351, Springer, Berlin, Heidelberg, 2008, pp. 903–912. https://doi.org/10.1007/978-3-540-89197-0_84.
[76]
M. Vacher, S. Caffiau, F. Portet, B. Meillon, C. Roux, E. Elias, B. Lecouteux and P. Chahuara, Evaluation of a context-aware voice interface for Ambient Assisted Living: Qualitative user study vs. quantitative system evaluation, ACM Transactions on Accessible Computing 7(2) (2015), 1–36.
[77]
M. Vacher, P. Chahuara, B. Lecouteux, D. Istrate, F. Portet, T. Joubert, M. Sehili, B. Meillon, N. Bonnefond, S. Fabre, C. Roux and S. Caffiau, The SWEET-HOME project: Audio technology in Smart Homes to improve well-being and reliance, in: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13), Osaka, Japan, 2013, pp. 7298–7301.
[78]
M. Vacher, A. Fleury, F. Portet, J.-F. Serignat and N. Noury, Complete sound and speech recognition system for health Smart Homes: Application to the recognition of activities of daily living, in: New Developments in Biomedical Engineering, D. Campolo, ed., 2010, pp. 645–673, In-Tech. 978-953-7619-57-2.
[79]
M. Vacher, A. Fleury, J.-F. Serignat, N. Noury and H. Glasson, Preliminary evaluation of speech/sound recognition for telemedicine application in a real environment, in: Interspeech’08, Brisbane, Australia, 2008, pp. 496–499, 4p.
[80]
M. Vacher, B. Lecouteux, P. Chahuara, F. Portet, B. Meillon and N. Bonnefond, The sweet-home speech and multimodal corpus for home automation interaction, in: The 9 Edition of the Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland, 2014, pp. 4499–4506.
[81]
D.L. Vail, M.M. Veloso and J.D. Lafferty, Conditional random fields for activity recognition, in: Proc. of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, New York, NY, USA, 2007, pp. 235:1–235:8.
[82]
T. van Kasteren, G. Englebienne and B. Kröse, An activity monitoring system for elderly care using generative and discriminative models, Personal and Ubiquitous Computing 14(6) (2010), 489–498. https://doi.org/10.1007/s00779-009-0277-9.
[83]
T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, Hierarchical activity recognition using automatically clustered actions, in: Proc. of the Second International Conference on Ambient Intelligence, AmI’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 82–91.
[84]
T. van Kasteren and B. Krose, Bayesian activity recognition in residence for elders, in: 3rd IET International Conference on Intelligent Environments, Ulm, Germany, 2007, pp. 209–212.
[85]
R. Velik, A brain-inspired multimodal data mining approach for human activity recognition in elderly homes, Journal of Ambient Intelligence and Smart Environments 6(4) (2014), 447–468.
[86]
X. Wang and Q. Ji, Learning dynamic Bayesian network discriminatively for human activity recognition, in: 21st International Conference on Pattern Recognition (ICPR 2012), 2012, pp. 3553–3556.
[87]
P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini and G. Tröster, Activity recognition from on-body sensors: Accuracy-power trade-off by dynamic sensor selection, in: European Conference on Wireless Sensor Networks, R. Verdone, ed., Lecture Notes in Computer Science, Vol. 4913, Springer, 2008, pp. 17–33. https://doi.org/10.1007/978-3-540-77690-1_2.
[88]
N. Zouba, F. Bremond, M. Thonnat, A. Anfosso, E. Pascual, P. Mallea, V. Mailland and O. Guerin, A computer system to monitor older adults at home: Preliminary results, Gerontechnology Journal 8(3) (2009), 129–139.

Cited By

View all
  • (2024)Wavelet-based temporal models of human activity for anomaly detection in smart robot-assisted environmentsJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23014416:2(181-200)Online publication date: 1-Jan-2024
  • (2024)Development and Evaluation of a Passive Monitoring System for the Elderly Using the Matter ProtocolProcedia Computer Science10.1016/j.procs.2024.09.564246:C(2274-2283)Online publication date: 1-Jan-2024
  • (2022)Themed issue on human activity and behaviour computerised models for intelligent environmentsPersonal and Ubiquitous Computing10.1007/s00779-022-01689-726:5(1251-1253)Online publication date: 20-Jul-2022
  • Show More Cited By

Index Terms

  1. On-line human activity recognition from audio and home automation sensors: Comparison of sequential and non-sequential models in realistic Smart Homes1
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Ambient Intelligence and Smart Environments
          Journal of Ambient Intelligence and Smart Environments  Volume 8, Issue 4
          Human-centric computing and intelligent environments
          2016
          104 pages

          Publisher

          IOS Press

          Netherlands

          Publication History

          Published: 01 January 2016

          Author Tags

          1. Activity recognition
          2. Markov Logic Network
          3. Statistical Relational Learning
          4. Smart Home
          5. Ambient Assisted Living

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 11 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Wavelet-based temporal models of human activity for anomaly detection in smart robot-assisted environmentsJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23014416:2(181-200)Online publication date: 1-Jan-2024
          • (2024)Development and Evaluation of a Passive Monitoring System for the Elderly Using the Matter ProtocolProcedia Computer Science10.1016/j.procs.2024.09.564246:C(2274-2283)Online publication date: 1-Jan-2024
          • (2022)Themed issue on human activity and behaviour computerised models for intelligent environmentsPersonal and Ubiquitous Computing10.1007/s00779-022-01689-726:5(1251-1253)Online publication date: 20-Jul-2022
          • (2021)Self-supervised Human Activity Recognition by Learning to Predict Cross-Dimensional MotionProceedings of the 2021 ACM International Symposium on Wearable Computers10.1145/3460421.3480417(23-27)Online publication date: 21-Sep-2021
          • (2019)Internet of Things for enabling smart environmentsJournal of Ambient Intelligence and Smart Environments10.3233/AIS-18050911:1(23-43)Online publication date: 1-Jan-2019

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media