Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Internet of Things for enabling smart environments: : A technology-centric perspective

Published: 01 January 2019 Publication History

Abstract

The Internet of Things (IoT) is a computing paradigm whereby everyday life objects are augmented with computational and wireless communication capabilities, typically through the incorporation of resource-constrained devices including sensors and actuators, which enable their connection to the Internet. The IoT is seen as the key ingredient for the development of smart environments. Nevertheless, the current IoT ecosystem offers many alternative communication solutions with diverse performance characteristics. This situation presents a major challenge to identifying the most suitable IoT communication solution(s) for a particular smart environment. In this paper we consider the distinct requirements of key smart environments, namely the smart home, smart health, smart cities and smart factories, and relate them to current IoT communication solutions. Specifically, we describe the core characteristics of these smart environments and then proceed to provide a comprehensive survey of relevant IoT communication technologies and architectures. We conclude with our reflections on the crucial features of IoT solutions in this setting and a discussion of challenges that remain open for research.

References

[1]
S. Aguilar, R. Vidal and C. Gomez, Opportunistic sensor data collection with bluetooth low energy, Sensors 17(1) (2017), 159.
[2]
A. Akl, B. Chikhaoui, N. Mattek, J. Kaye, D. Austin and A. Mihailidis, Clustering home activity distributions for automatic detection of mild cognitive impairment in older adults 1, Journal of Ambient Intelligence and Smart Environments 8(4) (2016), 437–451.
[3]
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, Internet of Things: A survey on enabling technologies, protocols, and applications, IEEE Communications Surveys & Tutorials 17(4) (2015), 2347–2376.
[4]
G. Amato, D. Bacciu, M. Broxvall, S. Chessa, S. Coleman, M. Di Rocco, M. Dragone, C. Gallicchio, C. Gennaro, H. Lozano, H. McGinnity, A. Micheli, A.K. Ray, A. Renteria, A. Saffiotti, D. Swords, C. Vairo and P. Vance, Robotic ubiquitous cognitive ecology for smart homes, Journal of Intelligent & Robotic Systems 80(1) (2015), 57–81.
[5]
A.A. Aziz, M.C. Klein and J. Treur, An integrative ambient agent model for unipolar depression relapse prevention, Journal of Ambient Intelligence and Smart Environments 2(1) (2010), 5–20.
[6]
D. Bacciu, S. Chessa, C. Gallicchio and A. Micheli, On the need of machine learning as a service for the Internet of Things, in: ACM International Conference Proceedings Series, ACM, 2017.
[7]
G. Baldewijns, V. Claes, G. Debard, M. Mertens, E. Devriendt, K. Milisen, J. Tournoy, T. Croonenborghs and B. Vanrumste, Automated in-home gait transfer time analysis using video cameras, Journal of Ambient Intelligence and Smart Environments 8(3) (2016), 273–286.
[8]
V. Baños-Gonzalez, M.S. Afaqui, E. Lopez-Aguilera and E. Garcia-Villegas, IEEE 802.11 ah: A technology to face the IoT challenge, Sensors 16(11) (2016), 1960.
[9]
P. Baronti, P. Pillai, V.W. Chook, S. Chessa, A. Gotta and Y.F. Hu, Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards, Computer Communications 30(7) (2007), 1655–1695.
[10]
P. Bellavista, S. Chessa, L. Foschini, L. Gioia and M. Girolami, Human-enabled edge computing: Exploiting the crowd as a dynamic extension of mobile edge computing, IEEE Communications Magazine 56(1) (2018), 145–155.
[11]
S. Bernardino, J. Freitas Santos and J. Cadima Ribeiro, The legacy of European capitals of culture to the “smartness” of cities: The case of Guimarães 2012, in: Journal of Convention & Event Tourism, Vol. 19, Taylor & Francis, 2018, pp. 138–166.
[12]
G. Bleser, D. Steffen, M. Weber, G. Hendeby, D. Stricker, L. Fradet, F. Marin, N. Ville and F. Carré, A personalized exercise trainer for the elderly, Journal of Ambient Intelligence and Smart Environments 5(6) (2013), 547–562.
[13]
C. Bormann, A.P. Castellani and Z. Shelby, CoAP: An application protocol for billions of tiny Internet nodes, IEEE Internet Computing 16(2) (2012), 62–67.
[14]
C. Bormann, M. Ersue, A. Keranen and C. Gomez, Terminology for Constrained-Node Networks. RFC 7228, Internet Draft (Work in Progress), Draft Name: draft-bormann-lwig-7228-bis-02. Retrieved from http://www.rfc-editor.org/info/rfc7228, 2017.
[15]
V. Callaghan and H. Hagras, Preface, Thematic issue: Smart homes, Journal of Ambient Intelligence and Smart Environments 2(1) (2010), 207–209.
[16]
G. Cardone, A. Cirri, A. Corradi and L. Foschini, The participact mobile crowd sensing living lab: The testbed for smart cities, IEEE Communications Magazine 52(10) (2014), 78–85.
[17]
F. Castro-Jul, R.P. Díaz-Redondo and A. Fernández-Vilas, Collaboratively assessing urban alerts in ad hoc participatory sensing, Computer Networks 131 (2018), 129–143.
[18]
A. Cesta, G. Cortellessa, F. Fracasso, A. Orlandini and M. Turno, User needs and preferences on AAL systems that support older adults and their carers, Journal of Ambient Intelligence and Smart Environments 10(1) (2018), 49–70.
[19]
P. Chahuara, A. Fleury, F. Portet and M. Vacher, On-line human activity recognition from audio and home automation sensors: Comparison of sequential and non-sequential models in realistic smart homes 1, Journal of Ambient Intelligence and Smart Environments 8(4) (2016), 399–422.
[20]
J. Chin, V. Callaghan and S. Ben Allouch, The Internet of Things: Reflections on the past, present and future from a user centered and smart environments perspective, Journal of Ambient Intelligence and Smart Environments 11(1) (2019).
[21]
S.-L. Chua, S. Marsland and H. Guesgen, A supervised learning approach for behaviour recognition in smart homes, Journal of Ambient Intelligence and Smart Environments 8(3) (2016), 259–271.
[22]
T. Clausen, U. Herberg and M. Philipp, A critical evaluation of the IPv6 routing protocol for low power and lossy networks (RPL), in: Wireless and Mobile Computing, Networking and Communications (WiMob), 2011 IEEE 7th International Conference on, IEEE, 2011, pp. 365–372.
[23]
J. Clawson, J.A. Pater, A.D. Miller, E.D. Mynatt and L. Mamykina, No longer wearing: Investigating the abandonment of personal health-tracking technologies on craigslist, in: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, 2015, pp. 647–658.
[24]
D.J. Cook and S.K. Das, How smart are our environments? An updated look at the state of the art, Pervasive and Mobile Computing 3(2) (2007), 53–73.
[25]
D.J. Cook, G. Duncan, G. Sprint and R.L. Fritz, Using smart city technology to make healthcare smarter, Proceedings of the IEEE 106(4) (2018), 708–722.
[26]
G. Debard, M. Mertens, M. Deschodt, E. Vlaeyen, E. Devriendt, E. Dejaeger, K. Milisen, J. Tournoy, T. Croonenborghs, T. Goedemé, T. Tuytelaars and B. Vanrumste, Camera-based fall detection using real-world versus simulated data: How far are we from the solution?, Journal of Ambient Intelligence and Smart Environments 8(2) (2016), 149–168.
[27]
A. Dubois and F. Charpillet, Measuring frailty and detecting falls for elderly home care using depth camera, Journal of Ambient Intelligence and Smart Environments 9(4) (2017), 469–481.
[28]
G. Fagerberg, A. Kung, R. Wichert, M.-R. Tazari, B. Jean-Bart, G. Bauer, G. Zimmermann, F. Furfari, F. Potortì, S. Chessa, M. Hellenschmidt, J. Gorman, J. Alexandersson, J. Bund, E. Carrasco, G. Epelde, M. Klima, E. Urdarneta, G. Vanderheiden and I. Zinnikus, Platforms for AAL applications, in: European Conference on Smart Sensing and Context, Springer, 2010, pp. 177–201.
[29]
S. Farrell, LPWAN Overview. Internet Draft (Work in Progress), Draft Name: Draft-ietf-lpwan-overview-10, 2018.
[30]
E. Ferro and F. Potorti, Bluetooth and Wi-Fi wireless protocols: A survey and a comparison, IEEE Wireless Communications 12(1) (2005), 12–26.
[31]
A. Fleury, Q. Mourcou, C. Franco, B. Diot, J. Demongeot and N. Vuillerme, Evaluation of a smartphone-based audio-biofeedback system for improving balance in older adults – A pilot study, in: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, IEEE, 2013, pp. 1198–1201.
[32]
F. Furfari, M. Girolami, S. Lenzi and S. Chessa, A service-oriented zigbee gateway for smart environments, Journal of Ambient Intelligence and Smart Environments 6(6) (2014), 691–705.
[33]
M. Gams, I. Yu-Hua Gu, A. Härmä, A. Muñoz and V. Tam, Artificial intelligence and ambient intelligence, Journal of Ambient Intelligence and Smart Environments 11(1) (2019).
[34]
A. Gilchrist, Industry 4.0: The Industrial Internet of Things, Springer, 2016.
[35]
K. Gill, S.-H. Yang, F. Yao and X. Lu, A zigbee-based home automation system, IEEE Transactions on Consumer Electronics 55(2) (2009).
[36]
H. Gjoreski, M. Gams and M. Luštrek, Context-based fall detection and activity recognition using inertial and location sensors, Journal of Ambient Intelligence and Smart Environments 6(4) (2014), 419–433.
[37]
C. Gomez, J. Oller and J. Paradells, Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology, Sensors 12(9) (2012), 11734–11753.
[38]
C. Gomez and J. Paradells, Wireless home automation networks: A survey of architectures and technologies, IEEE Communications Magazine 48(6) (2010).
[39]
C. Gomez, J. Paradells, C. Bormann and J. Crowcroft, From 6LoWPAN to 6Lo: Expanding the universe of IPv6-supported technologies for the Internet of Things, IEEE Communications Magazine 55(12) (2017), 148–155.
[40]
R. Henssen and M. Schleipen, Interoperability between OPC UA and AutomationML, Procedia CIRP 25 (2014), 297–304.
[41]
Y.G. Hong, Y.H. Choi, J.S. Youn, D.K. Kim and J.H. Choi, Transmission of IPv6 packets over near field communication. Internet Draft (Work in Progress), Draft Name: Draft-ietf-6lo-nfc-09, 2015.
[42]
J. Hou, X. Tang and Y.-G. Hong, Transmission of IPv6 Packets over PLC Networks. Internet Draft (Work in Progress), Draft Name: draft-hou-6lo-plc-03, 2018.
[43]
X. Hu, T.H. Chu, H.C. Chan and V.C. Leung, Vita: A crowdsensing-oriented mobile cyber-physical system, IEEE Transactions on Emerging Topics in Computing 1(1) (2013), 148–165.
[44]
R. Igual, I. Plaza, C. Medrano and M.A. Rubio, Personalizable smartphone-based system adapted to assist dependent people, Journal of Ambient Intelligence and Smart Environments 6(6) (2014), 569–593.
[45]
S.R. Islam, D. Kwak, M.H. Kabir, M. Hossain and K.-S. Kwak, The Internet of Things for health care: A comprehensive survey, IEEE Access 3 (2015), 678–708.
[46]
E. Jean-Baptiste, M. Russell, J. Howe and P. Rotshtein, Intelligent prompting system to assist stroke survivors, Journal of Ambient Intelligence and Smart Environments 9(6) (2017), 707–723.
[47]
Ö. Kafalı, S. Bromuri, M. Sindlar, T. van der Weide, E. Aguilar Pelaez, U. Schaechtle, B. Alves, D. Zufferey, E. Rodriguez-Villegas, M.I. Schumacher and K. Stathis, Commodity 12: A smart e-health environment for diabetes management, Journal of Ambient Intelligence and Smart Environments 5(5) (2013), 479–502.
[48]
A.-B. Karami and A. Fleury, Using feedback in adaptive and user-dependent one-step decision making, in: 25th International Joint Conference on Artificial Intelligence (IJCAI-16) Workshop “Interactive Machine Learning”, AAAI Press/International Joint Conferences on Artificial Intelligence, 2016, p. 5.
[49]
A.B. Karami, A. Fleury, J. Boonaert and S. Lecoeuche, User in the loop: Adaptive smart homes exploiting user feedback – state of the art and future directions, Information 7(2) (2016), 35.
[50]
S. Karnouskos, A.W. Colombo, T. Bangemann, K. Manninen, R. Camp, M. Tilly, P. Stluka, F. Jammes, J. Delsing and J. Eliasson, A SOA-based architecture for empowering future collaborative cloud-based industrial automation, in: IECON 2012 – 38th Annual Conference on IEEE Industrial Electronics Society, IEEE, 2012, pp. 5766–5772.
[51]
S. Kehrer, O. Kleineberg and D. Heffernan, A comparison of fault-tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN), in: Emerging Technology and Factory Automation (ETFA), 2014, IEEE, 2014, pp. 1–8.
[52]
H. Kerdegari, S. Mokaram, K. Samsudin and A.R. Ramli, A pervasive neural network based fall detection system on smart phone, Journal of Ambient Intelligence and Smart Environments 7(2) (2015), 221–230.
[53]
S.S. Khan and J. Hoey, Review of fall detection techniques: A data availability perspective, Medical Engineering and Physics 39 (2017), 12–22.
[54]
M. Krivỳ, Towards a critique of cybernetic urbanism: The smart city and the society of control, Planning Theory (2016).
[55]
C. Kürschner, C. Condea, O. Kasten and F. Thiesse, Discovery service design in the epcglobal network, in: The Internet of Things, Springer, 2008, pp. 19–34.
[56]
M. Kurz, G. Holzl, A. Ferscha, A. Calatroni, D. Roggen, G. Troster, H. Sagha, R. Chavarriaga, J. del R. Millan, D. Bannach, K. Kunze and P. Lukowicz, The opportunity framework and data processing ecosystem for opportunistic activity and context recognition, International Journal of Sensors Wireless Communications and Control 1(2) (2011), 102–125.
[57]
J.K. Laurila, D. Gatica-Perez, I. Aad, O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle and M. Miettinen, The mobile data challenge: Big data for mobile computing research, in: Pervasive Computing.
[58]
J. Lee, B. Bagheri and H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems, Manufacturing Letters 3 (2015), 18–23.
[59]
J. Lee, B.A. Reyes, D.D. McManus, O. Maitas and K.H. Chon, Atrial fibrillation detection using an iPhone 4S, IEEE Transactions on Biomedical Engineering 60(1) (2013), 203–206.
[60]
L. Liu, M. Popescu, M. Skubic, M. Rantz and P. Cuddihy, An automatic in-home fall detection system using Doppler radar signatures, Journal of Ambient Intelligence and Smart Environments 8(4) (2016), 453–466.
[61]
Z. Lv, X. Li, W. Wang, B. Zhang, J. Hu and S. Feng, Government affairs service platform for smart city, Future Generation Computer Systems 81 (2018), 443–451.
[62]
J. Martocci, K. Lynn, C. Neilson and S. Donaldson, Transmission of IPv6 over Master-Slave/Token-Passing (MS/TP) Networks. RFC 8163, 2017.
[63]
M. Masera, E.F. Bompard, F. Profumo and N. Hadjsaid, Smart (electricity) grids for smart cities: Assessing roles and societal impacts, Proceedings of the IEEE 106(4) (2018), 613–625.
[64]
A. Minaburo, L. Toutain and C. Gomez, LPWAN Static Context Header Compression (SCHC) and fragmentation for IPv6 and UDP. Internet Engineering Task Force, Internet Draft, Draft Name: draft-ietf-lpwan-ipv6-static-context-hc-10, 2017.
[65]
A. Monacchi, F. Versolatto, M. Herold, D. Egarter, A.M. Tonello and W. Elmenreich, An open solution to provide personalized feedback for building energy management, Journal of Ambient Intelligence and Smart Environments 9(2) (2017), 147–162.
[66]
L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn and K. Ueda, Cyber-physical systems in manufacturing, CIRP Annals 65(2) (2016), 621–641.
[67]
N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle and J.E. Lundy, Fall detection-principles and methods, in: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, IEEE, 2007, pp. 1663–1666.
[68]
J. O’Donoghue, R. Wichert and M. Divitini, Thematic issue: Home-based Health and Wellness Measurement and Monitoring (Vol. 4). Journal of Ambient Intelligence and Smart Environments 2012.
[69]
P. O’Donovan, K. Leahy, K. Bruton and D.T. O’Sullivan, Big data in manufacturing: A systematic mapping study, Journal of Big Data 2(1) (2015), 20.
[70]
N. Pavón-Pulido, J.A. López-Riquelme, J. Ferruz-Melero, M.Á. Vega-Rodríguez and A.J. Barrios-León, A service robot for monitoring elderly people in the context of ambient assisted living, Journal of Ambient Intelligence and Smart Environments 6(6) (2014), 595–621.
[71]
R.A. Perez, J.T. Lilkendey and S.W. Koh, Machine learning for a dynamic manufacturing environment, ACM SIGICE Bulletin 19(3) (1994), 5–9.
[72]
B. Pogorelc and M. Gams, Home-based health monitoring of the elderly through gait recognition, Journal of Ambient Intelligence and Smart Environments 4(5) (2012), 415–428.
[73]
A. Prati, C. Shan and K. Wang, Sensors, vision and networks: From video surveillance to activity recognition and health monitoring, Journal of Ambient Intelligence and Smart Environments 11(1) (2019).
[74]
D. Preuveneers and E. Ilie-Zudor, The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0, Journal of Ambient Intelligence and Smart Environments 9(3) (2017), 287–298.
[75]
P. Priore, D. de la Fuente, J. Puente and J. Parreño, A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems, Engineering Applications of Artificial Intelligence 19(3) (2006), 247–255.
[76]
P. Rashidi and D.J. Cook, Keeping the resident in the loop: Adapting the smart home to the user, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 39(5) (2009), 949–959.
[77]
B. Reiterer, C. Concolato, J. Lachner, J. Le Feuvre, J.-C. Moissinac, S. Lenzi, S. Chessa, E.F. Ferrá, J.J.G. Menaya and H. Hellwagner, User-centric universal multimedia access in home networks, The Visual Computer 24(7–9) (2008), 837–845.
[78]
L. Rosales, B.Y. Su, M. Skubic and K.C. Ho, Heart rate monitoring using hydraulic bed sensor ballistocardiogram, Journal of Ambient Intelligence and Smart Environments 9(2) (2017), 193–207.
[79]
G. Roussos, Networked RFID: Systems, Software and Services, Springer Science & Business Media, 2008.
[80]
G. Roussos and P. Chartier, Scalable id/locator resolution for the iot, in: Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing, IEEE, 2011, pp. 58–66.
[81]
S. Sarma, D. Brock and D. Engels, Radio frequency identification and the electronic product code, IEEE Micro 21(6) (2001), 50–54.
[82]
Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet, Vol. 43, John Wiley & Sons, 2011.
[83]
Z. Shelby, K. Hartke and C. Bormann, The constrained application protocol (CoAP). RFC 7252, 2014.
[84]
B.N. Silva, M. Khan and K. Han, Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities, Sustainable Cities and Society 38 (2018), 697–713.
[85]
E.-E. Steen, T. Frenken, M. Eichelberg, M. Frenken and A. Hein, Modeling individual healthy behavior using home automation sensor data: Results from a field trial, Journal of Ambient Intelligence and Smart Environments 5(5) (2013), 503–523.
[86]
N. Streitz, Beyond ‘smart-only’ cities: Redefining the ‘smart-everything’ paradigm, Journal of Ambient Intelligence and Humanized Computing. (2018).
[87]
N. Streitz, D. Charitos, M. Kaptein and M. Böhlen, Grand challenges for ambient intelligence and implications for design contexts and smart societies, Journal of Ambient Intelligence and Smart Environments 11(1) (2019).
[88]
A.K. Tripathy, P.K. Tripathy, N.K. Ray and S.P. Mohanty, iTour: The future of smart tourism: An IoT framework for the independent mobility of tourists in smart cities, IEEE Consumer Electronics Magazine 7(3) (2018), 32–37.
[89]
R. Velik, A brain-inspired multimodal data mining approach for human activity recognition in elderly homes, Journal of Ambient Intelligence and Smart Environments 6(4) (2014), 447–468.
[90]
P.K. Verma, R. Verma, A. Prakash, A. Agrawal, K. Naik, R. Tripathi, M. Alsabaan, T. Khalifa, T. Abdelkader and A. Abogharaf, Machine-to-machine (M2M) communications: A survey, Journal of Network and Computer Applications 66 (2016), 83–105.
[91]
L. Walsh and S. McLoone, Non-contact under-mattress sleep monitoring, Journal of Ambient Intelligence and Smart Environments 6(4) (2014), 385–401.
[92]
Y.-P.E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman and H.S. Razaghi, A primer on 3GPP narrowband Internet of Things, IEEE Communications Magazine 55(3) (2017), 117–123.
[93]
T. Watteyne, M. Palattella and L. Grieco, Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the Internet of Things (IoT): Problem statement. RFC 7554, 2015.
[94]
T. Winter, RFC 6550, 2012.
[95]
A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, Internet of Things for smart cities, IEEE Internet of Things Journal 1(1) (2014), 22–32.
[96]
J. Zawieska and J. Pieriegud, Smart city as a tool for sustainable mobility and transport decarbonisation, Transport Policy 63 (2018), 39–50.

Cited By

View all
  • (2024)An unsupervised anomaly detection framework for smart assisted living via growing neural gas networksJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23043616:3(365-387)Online publication date: 24-Sep-2024
  • (2024)Evaluation factors of adopting smart home IoTJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23007116:4(439-464)Online publication date: 1-Jan-2024
  • (2024)Edge computing in IoT for smart healthcareJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23000916:4(409-438)Online publication date: 1-Jan-2024
  • Show More Cited By

Index Terms

  1. Internet of Things for enabling smart environments: A technology-centric perspective
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Journal of Ambient Intelligence and Smart Environments
            Journal of Ambient Intelligence and Smart Environments  Volume 11, Issue 1
            2019
            105 pages
            This is a free to read article. Copyright IOS Press and the authors.

            Publisher

            IOS Press

            Netherlands

            Publication History

            Published: 01 January 2019

            Author Tags

            1. IoT
            2. smart home
            3. smart health
            4. smart cities
            5. smart factories

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 11 Feb 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)An unsupervised anomaly detection framework for smart assisted living via growing neural gas networksJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23043616:3(365-387)Online publication date: 24-Sep-2024
            • (2024)Evaluation factors of adopting smart home IoTJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23007116:4(439-464)Online publication date: 1-Jan-2024
            • (2024)Edge computing in IoT for smart healthcareJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23000916:4(409-438)Online publication date: 1-Jan-2024
            • (2024)Low-cost IoT-enabled indoor air quality monitoring systemsJournal of Ambient Intelligence and Smart Environments10.3233/AIS-22057716:2(167-180)Online publication date: 1-Jan-2024
            • (2023)A systematic literature review of Smart Home Technology acceptanceJournal of Ambient Intelligence and Smart Environments10.3233/AIS-22003315:2(115-142)Online publication date: 1-Jan-2023
            • (2023)IoTBeholderProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35808907:1(1-26)Online publication date: 28-Mar-2023
            • (2022)Enhancing the park experience by giving visitors control over the park’s soundscapeJournal of Ambient Intelligence and Smart Environments10.3233/AIS-22062114:2(99-118)Online publication date: 1-Jan-2022
            • (2022)Paradigms for the conceptualization of Cyber-Physical-Social-Thinking hyperspaceJournal of Ambient Intelligence and Smart Environments10.3233/AIS-21049214:4(285-316)Online publication date: 1-Jan-2022
            • (2022)A highly efficient garbage pick-up embedded system based on improved SSD neural network using robotic armsJournal of Ambient Intelligence and Smart Environments10.3233/AIS-21012914:5(405-421)Online publication date: 5-Sep-2022
            • (2022)A novel application of fuzzy inference system optimized with particle swarm optimization and genetic algorithm for PM10 predictionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-06777-726:18(9573-9586)Online publication date: 1-Sep-2022
            • Show More Cited By

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media